Meine Merkliste
my.chemie.de  
Login  

CREB



 

CREB steht für engl. cAMP response element-binding protein und ist ein gut untersuchter Transkriptionsfaktor. CREB besitzt eine sogenannte bZIP-Domäne, mit welcher er einen Homodimer bildet d.h. er bindet an sich selbst und formt so eine Gabelstruktur. Diese kann spezifisch an die sogenannte "cAMP response element"-Sequenz (CRE) binden, dies sind spezifische Nukleotid-Sequenzen im Promotor von bestimmten Genen. Die Bindung bewirkt eine verstärkte Transkription dieses Gens. Der Dimer entsteht jedoch erst nach Phosphorylierung von CREB durch eine Proteinkinase. CREB bildet somit einen Endpunkt einer Signaltransduktionskaskade, d.h. eine Zelle kann durch ein Signal von Außen angeregt werden individuelle Gene zu aktivieren. Als erster Weg zur Aktivierung von CREB wurde hierbei die Signaltransduktion über cAMP und Proteinkinase A unter anderem durch den Nobelpreisträger Eric Kandel beschrieben, welcher für CREB namensgebend war. Inzwischen sind weitere Signaltransduktionskaskaden bekannt, welche ebenfalls CREB phosphorylieren, beispielsweise Extracellular-signal Regulated Kinase (ERK).

Die Aktivierung von Genen über CREB ist in der Tierwelt gut konserviert und kommt auch beim Menschen vor. Sehr viele G-Protein gekoppelte Rezeptoren reagieren über CREB, beispielsweise der Glucagon-Rezeptor, welcher die Gluconeogenese steuert. CREB beeinflusst auch die Bildung der Langzeiterinnerung in Nervenzellen.

CREB hat auch Einfluss auf circadiane Uhren in einigen Vertebraten. Mittels CREB kann eine Neusynchronisation über Lichtimpulse erfolgen. Lichtreize werden über das Auge aufgenommen und über den retinohypothalamischen Trakt zu Neuronen in den Suprachiasmatischen Nuclei (SCN) geleitet. Die Aktionspotentiale werden dort final über Neurotransmitter Glutamat oder PACAP in neurochemische Signale tranformiert und öffnen in den Zellen der SCN Calcium-Kanäle. Der Calcium-Influx aktiviert bestimmte Kinasen, welche CREB phosphorylieren. CREB bindet an die CRE-Box von period1, einem essentiellen Bestandteil des Oszillators und kann durch die neu dazu gewonnenen Phosphatgruppen mit Co-Aktivatoren interagieren. Dies führt zu einer Verstärkung der per1-Expression. Phasenverschiebungen und ergo Neusynchronisation können daraus resultieren.

Literatur

  • Barco A, Bailey CH, Kandel ER: Common molecular mechanisms in explicit and implicit memory. Journal of Neurochemistry 2006, 97: 1520-1533.
  • Montminy MR, Gonzalez GA, Yamamoto KK: Regulation of cAMP-inducible genes by CREB. Trends Neurosci. 1990; 13(5):184-8 PMID 1693237
  • DD Ginty, JM Kornhauser, MA Thompson, H Bading, KE Mayo, JS Takahashi, and ME Greenberg: Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.
 
Dieser Artikel basiert auf dem Artikel CREB aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.