Meine Merkliste
my.chemie.de  
Login  

Vektorpotential



In der klassischen Elektrodynamik, einem Teilgebiet der Physik, wird das Vektorpotential \mathbf A(\mathbf r) als mathematisches Hilfsmittel verwendet, um den Umgang mit der magnetischen Induktion \mathbf B(\mathbf r) (anschaulich: das "Magnetfeld") zu vereinfachen. Es lässt sich verwenden, um die Maxwell-Gleichungen, welche das elektromagnetische Feld beschreiben, zu entkoppeln und so leichter lösbar zu machen. Es zeigt sich, dass das Vektorpotential über eine Faltung aus einer gegebenen Stromverteilung \mathbf j(\mathbf r) hervorgeht. Man kann also das Vektorpotential zu einer gegebenen Stromverteilung berechnen und daraus dann die magnetische Induktion \mathbf B(\mathbf r), welche durch diese Verteilung erzeugt wird. Die magnetische Induktion ist (im Gegensatz zum Vektorpotential) eine direkt messbare Größe. Unter einer Stromverteilung kann man sich etwa eine Anordnung von stromdurchflossenen Leitern im Raum vorstellen, wie einen zu einer Spule gewundenen Draht, oder auch nur einen einzelnen stromdurchflossenen Draht.

Definition

Das Vektorpotential \mathbf A(\mathbf r) wird so definiert, dass

\mathbf B(\mathbf r) = \nabla \times \mathbf A(\mathbf r)

gilt. Hierbei ist \nabla \times \mathbf A(\mathbf r) die Rotation des Vektorpotentials. Durch diesen Ansatz ist automatisch die Divergenz von \mathbf B Null.

In der Elektrodynamik gilt die obige Formel unverändert, wohingegen für das elektrische Feld \mathbf E(\mathbf r)

\mathbf E(\mathbf r) = - \nabla\Phi - \partial_t \mathbf A(\mathbf r)

gilt. Hierbei ist Φ das skalare Potential.

Diese beiden Ansätze, zusammen mit der Lorenz-Eichung, werden benutzt, um die Maxwellgleichungen zu entkoppeln. In der Magnetostatik wird für gewöhnlich die Coulomb-Eichung benutzt, die den statischen Grenzfall der Lorenzeichung darstellt.

Eigenschaften des Vektorpotentials

(1) Das Vektorpotential ist nur bis auf ein Gradientenfeld bestimmt, denn für jede skalare Funktion \chi (\mathbf r , t) gilt

\mathbf A(\mathbf r , t)' = \mathbf A(\mathbf r , t)+ \nabla \chi (\mathbf r ,t)
\Rightarrow\;\; \mathbf B(\mathbf r , t)'=  \nabla \times \mathbf A(\mathbf r , t)'= \nabla \times \mathbf A(\mathbf r , t) + \nabla \times \nabla \chi = \nabla \times \mathbf A(\mathbf r , t)  = \mathbf B(\mathbf r , t)\,.
Dies wird als Eichinvarianz bezeichnet.
Verschieden geeichte Vektorpotentiale führen also auf dasselbe magnetische Feld. Dabei ist zu beachten, dass (wie hier verwendet) die Rotation eines Gradientenfeldes immer verschwindet.

(2) Das Vektorpotential ist als Vektorfeld nicht konservativ. Andernfalls wäre es durch den Gradienten eines skalaren Feldes α darstellbar und es würde gelten:

\mathbf B(\mathbf r) = \nabla \times \mathbf A(\mathbf r) = \nabla \times \nabla \alpha \equiv 0\,\,.

(3) In der Magnetostatik kann das Vektorpotential über die Coulomb-Eichung quellfrei gemacht werden, das bedeutet

\nabla \cdot\mathbf A(\mathbf r) = 0.

(4) In der Elektrodynamik, d.h. bei nicht-statischen Verhältnissen, benutzt man dagegen meist die sog. Lorenz-Eichung, nämlich folgende Beziehung, die für die Berechnung elektromagnetischer Wellenfelder nützlich ist:

\nabla \cdot\mathbf A(\mathbf r , t) + \frac{1}{\ c^2}\partial_t\Phi (\mathbf r , t) = 0\,. Dabei ist \Phi (\mathbf r , t) das sog. skalare Potential (s.u.).

(5) In der Magnetostatik erfüllt das Vektorpotential die Poisson-Gleichung, für die gilt

\nabla^2 \mathbf A(\mathbf r) = - \frac{1}{\varepsilon_0 c^2} \mathbf {j}.
Daraus erhält man folgende einfache Darstellung des Vektorpotentials über eine Faltung:
\mathbf A(\mathbf r) = \frac{\mu_0}{4\pi}\int\frac{\mathbf{j}(\mathbf{r}')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}^3r'\,.

Die Ausdrücke \nabla\cdot \mathbf A und \nabla\times \mathbf A werden von anderen Autoren auch als \mathrm{div}\,\mathbf A bzw. \mathrm{rot}\,\mathbf A bezeichnet.

(6) In der Elektrodynamik erweitert sich die Poisson-Gleichung zur (inhomogenen) Wellengleichung für das Vektorpotential

\Box \mathbf A(\mathbf r) = \nabla^2 \mathbf A(\mathbf r) - \frac{1}{c^2} \partial_t^2 \mathbf A(\mathbf r) = - \frac{1}{\varepsilon_0 c^2} \mathbf {j},
wobei \Box der d'Alembert-Operator ist.

Die Lösung dieser Gleichung ist das sog. retardierte Vektorpotential

\mathbf A(\mathbf r ,t) = \frac{\mu_0}{4\pi}\int\frac{\mathbf{j}(\mathbf{r}', t')}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}^3r', mit t'=t-\frac{|\mathbf r -\mathbf r'|}{c}.

(7) Die drei Komponenten Ax, Ay und Az des Vektorpotentials und das skalare Potential Φ / c können in der Elektrodynamik zu einem sog. Vierervektor zusammengefasst werden, der sich bei den sog. Lorentz-Transformationen der Speziellen Relativitätstheorie Albert Einsteins wie das Quadrupel (x, y, z ,ct) transformiert. c ist dabei die Vakuum-Lichtgeschwindigkeit.

 
Dieser Artikel basiert auf dem Artikel Vektorpotential aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.