30.10.2020 - BASF SE

40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

Erkenntnisse sollen die Katalysatorforschung einen wichtigen Schritt voranbringen

Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität Köln, dem Fritz-Haber-Institut und der BASF durch die Kombination verschiedener Methoden einen überraschenden Wirkmechanismus dieses Katalysators entdeckt. Diese Erkenntnisse sollen die Katalysatorforschung einen wichtigen Schritt voranbringen.

Propylenoxid wird in der Industrie eingesetzt, um zum Beispiel Polyurethane oder Frostschutzmittel und Hydraulikflüssigkeiten herzustellen. Mehr als elf Millionen Tonnen Propylenoxid werden in der chemischen Industrie weltweit jedes Jahr produziert, davon schon jetzt eine Million durch die Oxidation von Propylen mit Wasserstoffperoxid. Die chemische Reaktion wird katalysiert durch TS-1, ein mikroporöses, kristallines Material, das aus Silizium und Sauerstoff besteht und in dem kleine Mengen Titan enthalten sind. Der Katalysator wird seit 40 Jahren erfolgreich genutzt und die Fachwelt ging davon aus, dass das aktive Zentrum im TS-1 einzelne, isolierte Titanatome enthält, die für die besondere Reaktivität des Katalysators sorgen.

Ein Forscherteam der ETH Zürich, der Universität Köln, des Fritz-Haber-Instituts und der BASF hat diese Annahme in Frage gestellt. “In den vergangenen Jahren kamen Zweifel auf, ob die Annahme über den Wirkmechanismus korrekt ist, da sie sich hauptsächlich auf Analogien zu vergleichbaren Katalysatoren stützt und weniger auf experimentellen Beweisen. Wenn man aber versucht, auf Basis einer falschen Annahme einen Katalysator zu optimieren, ist das sehr schwierig und kann einen in die völlig falsche Richtung führen. Daher war es wichtig, diese Annahme genauer zu überprüfen“, erläutert der BASF-Wissenschaftler Dr. Henrique Teles, einer der Co-Autoren der wissenschaftlichen Veröffentlichung, den Ausgangspunkt für die Zusammenarbeit.

In einer Studie, die jetzt in “Nature“ veröffentlicht wurde, konnten die Wissenschaftler unter anderem mit Hilfe von Festköper-NMR-Untersuchungen und Computermodellierungen zeigen, dass zwei benachbarte Titanatome nötig sind, um die besondere katalytische Aktivität zu erklären. Dies wiederum hat das Forscher-Team darauf schließen lassen, dass die Titanatome nicht isoliert vorliegen, sondern dass das katalytisch aktive Zentrum aus einem Titan-Paar besteht. “Keine der Methoden, die wir in der Studie verwendet haben, ist grundsätzlich neu, dennoch hätte keine der beteiligten Forschungsgruppen allein die Untersuchung durchführen können“, betont Prof. Christophe Copéret von der ETH Zürich, der Korrespondenzautor der Publikation. “Nur die Kombination von unterschiedlichen Kenntnissen, Erfahrungen und verschiedenen Techniken hat es möglich gemacht, das aktive Zentrum des Katalysators genauer zu untersuchen.“  

“Wir haben viele Jahre an der Aufklärung des Reaktionsmechanismus eines Katalysators für die homogene Katalyse gearbeitet und herausgefunden, dass hier – entgegen den Annahmen in der Literatur – das Wasserstoffperoxid durch ein Titan-Paar aktiviert wird. Es war wirklich ein besonderer Moment, als wir in der aktuellen Untersuchung gesehen haben, dass die Erkenntnisse aus der homogenen Katalyse auch für die heterogene Katalyse zutreffen.“ erklärte der Co-Autor Prof. Albrecht Berkessel von der Universität Köln. Und Dr. Thomas Lunkenbein, Co-Autor vom Fritz-Haber-Institut in Berlin, ergänzt: “Wir freuen uns sehr, dass wir einen Beitrag zu dieser Studie leisten konnten. Mit unserer Analytik konnten wir die Schlussfolgerungen untermauern. Die Erkenntnis eines zweiatomigen aktiven Zentrums ist von grundlegender Bedeutung und eröffnet neue Möglichkeiten in der Katalysatorforschung.“

Das Team ist überzeugt, dass die Erkenntnisse dieser Studie nicht nur dazu beitragen werden, bestehende Katalysatoren zu verbessern, sondern auch neue homogene und heterogene Katalysatoren zu entwickeln.

Fakten, Hintergründe, Dossiers
  • Festkörper-NMR
  • Reaktionsmechanismus
  • homogene Katalyse
Mehr über BASF
Mehr über ETH Zürich
  • News

    Nanokugel am Quantenlimit

    Forschende der ETH Zürich haben ein hundert Nanometer grosses Kügelchen mit Laserlicht gefangen und seine Bewegung bis auf den niedrigsten quantenmechanischen Zustand abgebremst. Damit lassen sich Quanteneffekte an makroskopischen Objekten untersuchen und extrem empfindliche Sensoren bauen. ... mehr

    Mit AI zu neuen Arzneistoffen nach dem Vorbild der Natur

    Artificial Intelligence (AI) kann gezielt die biologische Aktivität von Naturstoffen erkennen, wie Forschende der ETH Zürich gezeigt haben. Darüber hinaus hilft AI, Moleküle zu finden, welche die gleiche Wirkung wie ein Naturstoff haben, aber einfacher in der Herstellung sind. Der Pharmafor ... mehr

    Bedenklicher Blick auf Plastik

    ETH-​Forschende untersuchten Chemikalien in Kunststoffen. Sie fanden eine unerwartet hohe Anzahl von potenziell besorgniserregenden Substanzen, die absichtlich in Plastik verwendet werden. Bei Chemikalien in alltäglichen Kunststoffprodukten mangelt es an Transparenz. Plastik ist praktisch, ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Mehr über Uni Köln
  • News

    Neuartiger Sensor reagiert hochempfindlich auf Atome und Moleküle

    Einem internationalen Forschungsteam unter Leitung der Universität zu Köln ist es erstmals gelungen, mehrere „atomar präzise“ Nanostreifen aus Graphen, einer Modifikation aus Kohlenstoff, miteinander zu komplexen Strukturen zu verbinden. Die Streifen konnten die Wissenschaftler in ein elekt ... mehr

    Magnetische Nanoteilchen ändern in einem Magnetfeld ihre magnetische Struktur

    Werden ultrafeine magnetische Partikel einem von außen einwirkenden Magnetfeld ausgesetzt, wächst ihr magnetischer Kern in bisher unerwarteter Weise. Das hat ein Team von Wissenschaftlern der Universität zu Köln, des Forschungszentrums Jülich und des Instituts Laue-Langevin in Grenoble, Fra ... mehr

    Klassisches Doppelspalt-Experiment in neuem Licht

    Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante des grundlegenden Doppelspalt-Experiments mittels resonanter inelastischer Röntgenstreuung am Europäischen Synchrotron ESRF in Grenobl ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Peter T. Rühr

    Peter T. Rühr, Jahrgang 1988, studierte Biologie mit Schwerpunkt auf der Kopfmorphologie von Ur-Insekten am Zoologischen Forschungsmuseum Alexander Koenig und an der Rheinischen Friedrich-Wilhelms-Universität Bonn, wo er 2017 seinen Masterabschluss erhielt. Seit 2018 promoviert er an der Un ... mehr

Mehr über Fritz-Haber-Institut