25.05.2021 - Philipps-Universität Marburg

Reißverschluss ermöglicht ein „neues Graphen“

Forscher entdecken neuartiges, atomar dünnes Kohlenstoffmaterial

Ein chemischer Reißverschluss macht es möglich, Molekülfäden zu Kohlenstoffnetzen zusammenzuschweißen, die sich von dem verwandten Werkstoff Graphen deutlich unterscheiden. Das zeigt ein internationales Forschungsteam unter Marburger Leitung im Wissenschaftsmagazin „Science“. Die neue Methode eröffnet Möglichkeiten für weitere maßgeschneiderte Materialien, erwarten die Autoren um den Chemiker Professor Dr. Michael Gottfried von der Philipps-Universität Marburg.

Nanoröhrchen, Fulleren, Graphen – die Ära der maßgeschneiderten Werkstoffe aus Kohlenstoff hat längst begonnen. „In Graphen ist jedes Kohlenstoffatom mit drei Nachbaratomen verbunden, so dass ein ebenes Wabenmuster aus sechseckigen Ringen entsteht“, erklärt Michael Gottfried. „Obwohl bereits zahlreiche andere Muster mit größeren oder kleineren Ringen vorgeschlagen worden sind, war bisher unklar, ob es solche Materialien gibt und wie sie hergestellt werden könnten.“

Welche Eigenschaften weisen solche Materialien auf? „Die Eigenschaften können sehr unterschiedlich sein, auch wenn es sich immer um Kohlenstoff handelt. Entscheidend ist die Verknüpfung der Atome“, ergänzt der finnische Physiker Professor Dr. Peter Liljeroth, der zusammen mit Gottfried als Leitautor firmiert.

Die Gruppe erzeugte ein flaches zweidimensionales Netz, das aus vier-, sechs- und achteckigen Ringen besteht. „Die Ringe sind in diesem sogenannten Biphenylen-Netzwerk völlig regelmäßig angeordnet“, erläutert Gottfried. „Die besondere Struktur ist jedoch nicht schon in den Vorläufermolekülen angelegt, aus denen das Netz aufgebaut wird; vielmehr bilden sich die vier- und achteckigen Ringe erst, während das Netz geknüpft wird.“

Hierzu entwickelte das Team eine neue Methode: Auf einer glatten Goldoberfläche werden Moleküle zunächst zu Ketten verknüpft, die sich der Länge nach nebeneinander aufreihen. Dann verbinden sich benachbarte Ketten wie die zwei Hälften eines Reißverschlusses, wobei sich Wasserstoff- und Fluor-Atome von den Ketten ablösen.

„Ein wichtiger Punkt dabei: Die Ketten liegen in zwei Varianten vor, die einander ähneln wie Bild und Spiegelbild, wie rechte und linke Hand“, legt Gottfried dar. Ketten derselben Form lagern sich geordnet aneinander, bevor die Verknüpfung beginnt. „Dies ist entscheidend, denn nur so entsteht die neuartige Kohlenstoffstruktur“, führt der Chemiker weiter aus: „Reagieren dagegen zwei Ketten unterschiedlicher Händigkeit, so entsteht das schon bekannte Graphen.“

Anschließend untersuchte die Forschungsgruppe mittels spektroskopischer Verfahren, welche Eigenschaften das Material aufweist. Dabei stieß sie auf einen fundamentalen Unterschied zum verwandten Graphen: „Die Charakterisierung ergab, dass sich bereits extrem schmale Streifen des neuen Materials wie ein Metall verhalten, was bei Graphen nicht der Fall ist. Diese Streifen könnten daher als Nanodrähte in künftigen elektronischen Schaltkreisen aus Kohlenstoff eingesetzt werden“, erläutert der Erstautor Dr. Qitang Fan aus Gottfrieds Arbeitsgruppe. „Unsere Reißverschlusstechnik ebnet den Weg, um neue Designermaterialien auf Kohlenstoffbasis zu entwickeln und ihre Eigenschaften zu erforschen“, schlussfolgern die Autoren aus den Ergebnissen.

Fakten, Hintergründe, Dossiers
Mehr über Universität Marburg
  • News

    Nur wenige Atome dick: Neue funktionelle Materialien entwickelt

    Sie sind 50.000-mal dünner als ein menschliches Haar und nur wenige Atome dick: Zweidimensionale Materialien sind die dünnsten heute herstellbaren Stoffe. Sie besitzen völlig neue Eigenschaften und gelten als der nächste große Schritt in der modernen Halbleitertechnologie. Künftig könnten s ... mehr

    Metallring ist aromatischer als Benzol

    Können große Moleküle aus Metall aromatisch sein? Ja, hat ein deutsch-französisches Team aus der Chemie festgestellt: Es erzeugte ein aromatisches Molekül, das ausschließlich aus Metallatomen besteht, aber die Eigenschaften klassischer aromatischer Verbindungen in den Schatten stellt. Die G ... mehr

    Neuen Quantenstrukturen auf der Spur

    Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien. Wissenschaftlern aus Regensburg, Marburg und Ann Arbor (USA) ist es nun gelungen mit ultrakurzen Lichtblitzen die genaue elektronische Struktur dieser Quantenmaterialien mit e ... mehr

  • White Paper

    Leitfähigkeitsmessungen mit „Plasma-Elektrode“

    Neues Verfahren erlaubt die Widerstandsmessung an dünnen Schichten mit weniger Messkontakten, als sonst üblich, sowie aus größerer Distanz mehr

  • q&more Artikel

    Von der RNA- zur Protein-Welt

    Die Evolution des tRNA-Prozessierungsenzyms (RNase P) hat in den verschiedenen ­Bereichen des Lebens zu sehr unterschiedlichen architektonischen Lösungen geführt. So ist die bakterielle RNase P grundsätzlich anders aufgebaut als die menschlichen RNase P-Enzyme in Zellkern und Mitochondrien. ... mehr

  • Autoren

    Dennis Walczyk

    Dennis Walczyk, geb. 1984, studierte Chemie an der Philipps-Universität Marburg. Seit 2012 ist er wissenschaftlicher Mitarbeiter und Doktorand in der Arbeitsgruppe von Prof. Dr. Hartmann am Institut für Pharmazeutische Chemie der Universität Marburg und beschäftigt sich dort u.a. mit der En ... mehr

    Prof. Dr. Roland K. Hartmann

    Roland K. Hartmann, geb. 1956, ist Professor der Pharmazeutischen Chemie an der Philipps-Universität Marburg. Er studierte Biochemie an der Freien Universität Berlin, wo er 1988 mit dem Ernst Reuter-Preis für seine hervorragende Dissertation ausgezeichnet wurde. Seine Forschungsinteressen u ... mehr

Mehr über Aalto University