Erst heiß, dann kalt: Neue Erkenntnisse zur Entstehung von Eis
Bisheriges Verständnis der Eisbildung auf den Kopf gestellt
Die weltweit erste molekulare Beobachtung zur Entstehung von Eis durch Forschende der TU Graz sowie der Unis Cambridge und Surrey zeigt, dass Wassermoleküle für den ersten Schritt der Eisbildung zusätzliche Energie aufbringen müssen.

Symbolbild
pixabay.com

Der Prozess der Eisentstehung konnte erstmals auf molekularer Ebene verfolgt werden.
© Lunghammer - TU Graz


Wasser gefriert bei Temperaturen unter 0 Grad Celsius zu Eis – eine Tatsache, die hinlänglich bekannt ist. Unbekannt war bislang allerdings der exakte Vorgang der Eisentstehung auf mikroskopischer Ebene. Herkömmliche Mikroskope sind schlichtweg zu langsam, um diesen Prozess direkt beobachten zu können, wie Anton Tamtögl vom Institut für Experimentalphysik der TU Graz erklärt: „Der erste Schritt bei der Eisbildung, die sogenannte ‚Nukleation‘, geschieht in unglaublich kurzer Zeit. Im Bruchteil einer Milliardstel Sekunde finden einzelne, schnelle und bewegliche Wassermoleküle zueinander und verschmelzen.“
Erkenntnisse stellen bisheriges Verständnis der Eisbildung auf den Kopf
Mithilfe einer neuen experimentellen Technik und mit computergestützten Simulationsrechnungen ist es Tamtögl gemeinsam mit einer Forschergruppe der Universitäten Cambridge und Surrey nun erstmals gelungen, die Entstehung von Eis auf molekularer Ebene zu verfolgen. Ihre Entdeckung präsentieren die Forschenden in Nature Communications. Die Beobachtungen der internationalen Forschergruppe haben gezeigt, dass sich die Wassermoleküle gegenseitig abstoßen. Demnach müssen sie erst genügend Energie gewinnen, um diese Abstoßung zu überwinden, bevor sich Eis bilden kann. Es muss sozusagen erst heiß werden, bevor Eis entstehen kann. Bisher war man davon ausgegangen, dass die Eisbildung ungehindert geschieht. „Unsere Ergebnisse führen zu einem völlig neuen Verständnis über die Eisbildung“, so Studienerstautor Anton Tamtögl.
Der „Tanz” der Wassermoleküle
Den Abstoßungs-Effekt der Wassermoleküle entdeckten die Forschenden mithilfe des sogenannten Helium Spin-Echo (HeSE). Dabei handelt es sich um eine neue Methode des Cavendish Laboratory in Cambridge, bei der ein Gerät Helium von sich bewegenden Molekülen streut – ähnlich wie Radiowellen von Fahrzeugen bei einer Radarkontrolle gestreut werden. Damit lassen sich Bewegungen von Atomen und Molekülen verfolgen. Die Heliumatome streuen von der Oberfläche, also den sich dort bewegenden Molekülen, danach wird registriert, wie viele davon und mit welcher Energie (Geschwindigkeit) diese im „Detektor“ ankommen. Die HeSE-Experimente zeigen, dass sich Wassermoleküle auf einer Graphen-Oberfläche, also einer einzelnen atomaren Lage von Kohlenstoff, bei gleicher Ausrichtung – nämlich senkrecht zur Oberfläche – abstoßen; analog zu zwei Magneten, die sich mit gleichnamigen Polen annähern. Graphen wurde als „Schauplatz“ für die Experimente gewählt, weil es wenig reaktionsfreudig ist und damit das Ergebnis nicht beeinflusst. Computergestützte Simulationen, mit denen die genaue Energie der Wassermoleküle in verschiedenen Konfigurationen abgebildet und die Wechselwirkung zwischen sich annähernden Molekülen bestimmt wurden, untermauern die experimentellen Ergebnisse. In den Simulationen kann zudem die Abstoßung „ein- und ausgeschaltet“ werden, was den Effekt ebenfalls eindeutig bestätigt.
Relevanz für vielschichtige technologische Anwendungen
Die Gruppe rund um Anton Tamtögl geht davon aus, dass der Abstoßungseffekt nicht nur auf der untersuchten Graphen-Oberfläche, sondern ebenso auf anderen Oberflächen auftritt. „Unsere Erkenntnisse ebnen den Weg für neue Strategien, mit denen die Eisbildung kontrolliert oder die Vereisung verhindert werden kann“, denkt Tamtögl etwa an Oberflächenbehandlungen speziell für die Windkraft, die Luftfahrt oder die Telekommunikation.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Anton Tamtögl, Emanuel Bahn, Marco Sacchi, Jianding Zhu, David J. Ward, Andrew P. Jardine, Stephen J. Jenkins, Peter Fouquet, John Ellis & William Allison; "Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene"; Nature Communications; May 2021.
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

IBU-tec treibt Entwicklung im Forschungsbereich von Natrium-Ionen-Batterien voran und erzielt weitere Fortschritte - Zudem neues Forschungsprojekt zu innovativen Kathodenaktivmaterial auf Basis von Natrium-Eisen-Phosphat für Natrium-Ionen-Batteriesystemen mit Jungheinrich und UniverCell gestartet

Auf die Rauheit kommts an - Wie die Oberfläche von Partikeln den sprunghaften Anstieg der Viskosität von Suspensionen beeinflusst
Düsenkühler_(Fahrzeug)
BASF und INEOS planen Styrolution, ein neues Unternehmen der Styrolkunststoff-Industrie - Absichtserklärung unterzeichnet: Neues Joint Venture soll einen jährlichen Umsatz von über 5 Milliarden € erwirtschaften
Holzpellet
Kategorie:Erdöl
