15.06.2021 - Albert-Ludwigs-Universität Freiburg

Bindung eines zweiten CO-Moleküls beobachtet

Forscher klären weiteren Schritt im Mechanismus der Reduktion von Kohlenmonoxid durch Nitrogenase auf

Dank der biologischen Fixierung des Elements Stickstoff durch das Enzym Nitrogenase erhalten Organismen Zugriff auf den Stickstoff (N2) in der Erdatmosphäre, den sie nutzen, um zelluläre Strukturen aufzubauen. Zudem kann eine Vanadium-abhängige Variante der Nitrogenase das giftige Gas Kohlenmonoxid (CO) zu Kohlenwasserstoffen reduzieren. Diese Reduktionen von N2 und CO gehören in der industriellen Chemie zu den wichtigsten Verfahren, da sie für die Produktion sowohl von Düngemitteln als auch von synthetischen Kraftstoffen eingesetzt werden. Forschende konnten bisher jedoch nicht den unterschiedlichen Verlauf beider Reaktionen entschlüsseln. Dr. Michael Rohde aus dem Team von Prof. Dr. Oliver Einsle vom Institut für Biochemie der Universität Freiburg konnte nun in Zusammenarbeit mit zwei Arbeitsgruppen der Freien Universität Berlin zeigen, wie das Aktivzentrum der Vanadium-abhängigen Nitrogenase in der Lage ist, zwei CO-Moleküle gleichzeitig zu binden und dadurch die Basis zu schaffen, die räumlich benachbarten Kohlenstoffatome beider Moleküle in einem reduktiven Prozess zu verbinden.

Unterschiedliche Reaktionen der Nitrogenase

Die industriell durchgeführten Reduktionen von N2 und CO – als Haber-Bosch- beziehungsweise Fischer-Tropsch-Verfahren bezeichnet – laufen unter hohen Temperaturen und Druck ab. Während die N2-Reduktion zu dem bioverfügbaren Produkt Ammonium (NH4+) führt, verbinden sich bei der Umsetzung von CO mindestens zwei Kohlenstoffatome miteinander. Das überwiegende Reaktionsprodukt ist Ethylen (Ethen, C2H4), ein farbloses Gas, das nicht nur für Kraftstoffe, sondern auch in der Produktion von Kunststoffen eine wichtige Rolle spielt. Obwohl sich die Spaltung einer N-N-Bindung in der Stickstofffixierung chemisch ganz fundamental von der Knüpfung einer C-C-Bindung in der CO-Reduktion unterscheidet, vermuteten Wissenschaftlerinnen und Wissenschaftler bisher, dass die Nitrogenase für beide Reaktionen die gleichen mechanistischen Grundprinzipien nutzt.

Zweites CO-Molekül am Aktivzentrum

Das Team um Rohde und Einsle hat in einer früheren Arbeit Nitrogenase mit dem Gas CO umgesetzt, was zur spezifischen Bindung eines einzigen Moleküls führte. In ihrer darauf aufbauenden, aktuellen Studie zeigen die Forschenden, dass sie die Kristalle dieses ersten Zustands unter Druck mit CO begast und dann einer röntgenkristallographischen Analyse unterzogen haben. Hierdurch konnte sie direkt beobachten, wie ein zweites CO-Molekül bindet. „Die so erhaltene Form der Nitrogenase mit zwei CO-Molekülen am Aktivzentrum stellt vermutlich einen blockierten Zustand dar“, erklärt Rohde, „doch liefert er unmittelbare Hinweise auf den Mechanismus des Enzyms.“ Dadurch kann das Team um Einsle nun einen ausführlichen Mechanismus der CO-Reduktion durch Nitrogenase skizzieren.

Fakten, Hintergründe, Dossiers
Mehr über Uni Freiburg
  • News

    Programmierbare Strukturen aus dem Drucker

    Forschende der Universität Freiburg und der Universität Stuttgart haben ein neues Verfahren entwickelt, um bewegliche, sich selbst-anpassende Materialsysteme im handelsüblichen 3-D-Drucker herzustellen. Die Systeme können unter dem Einfluss von Feuchtigkeit komplexe Formveränderungen durchl ... mehr

    Redox–Flow–Batterie mit langer Lebensdauer

    Redox-Flow-Batterien, die auch als Flüssigbatterien bekannt sind, speichern elektrische Energie in gelösten chemischen Verbindungen. Sie gelten besonders fürstationäre Energiespeicher als Alternative zu Lithium-Ionen-Batterien. Einem Team um Prof. Dr. Ingo Krossing vom Institut für Anorga­n ... mehr

    KI-gestützter Roboter hilft beim Pipettieren

    Ob in der Medizin, Pharmazie, Biologie oder Chemie: Pipetten sind für Mitarbeitende in Laboren wichtige Instrumente, um Flüssigkeiten zu übertragen. Die genaue Ausführung des Pipettierens ist insbesondere dann von großer Bedeutung, sobald Wissenschaftler Experimente reproduzieren. Die Freib ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr