Meine Merkliste
my.chemie.de  
Login  

Graviton



Als Graviton bezeichnet man das hypothetische Eichboson einer Quantentheorie der Gravitation. Dieser Annahme zufolge ist es der Träger der Gravitationskraft.

Der Name Graviton wurde in Anlehnung an das Photon der Elektromagnetischen Wechselwirkung gewählt. Auch einige der Eigenschaften des Gravitons (Ausbreitungsgeschwindigkeit, Masselosigkeit) entsprechen denen eines Photons. Sein Spin wird aufgrund von Überlegungen aus der Quantenfeldtheorie zu S=2 postuliert. In der Quantenelektrodynamik (QED) wirken Bosonen mit geradzahligem Spin zwischen gleichen Ladungen immer anziehend, während Bosonen, die ungeradzahligen Spin tragen, abstoßend wirken. In der Elektrodynamik wirkt das Photon mit Spin 1 zwischen zwei Elektronen, die beide jeweils eine Ladung von -e tragen, abstoßend. In Analogie dazu geht man im Fall der Gravitation davon aus, dass es nur Teilchen gleicher Ladung gibt (in Übereinstimmung mit der Erfahrung, dass die Gravitation immer anziehend wirkt) und postuliert deshalb das Graviton als Spin-2-Teilchen. In supersymmetrischen Modellen der Quantengravitation erhält das gewöhnliche Graviton massive Partner mit Spin 0 (Graviskalar) und Spin 1 (Gravivektor oder Graviphoton). Abhängig von ihren Massen, und damit ihren Reichweiten, könnten diese neuen Teilchen eine Änderung des normalen 1/r2-Kraftgesetzes der Gravitation zur Folge haben.

Genau wie die elektromagnetische Strahlung durch die maxwellschen Gleichungen der Elektrodynamik beschrieben wird, ergibt sich aus den Feldgleichungen der allgemeinen Relativitätstheorie die Gravitationsstrahlung.

Analog zur Quantisierung der elektromagnetischen Strahlung in der QED durch Photonen wurde schon früh spekuliert, dass eine entsprechende Quantisierung der Gravitationsstrahlung durch Gravitonen in einer bislang unbekannten Theorie der Quantengravitation existiert. Die Quantisierung wird erschwert durch den Umstand, dass Gravitation im Gegensatz zu allen anderen bekannten Strahlungen nicht abschirmbar ist und auf alle Massen wirkt, egal wo sie sich im Universum befinden. So ziehen sich auch weit entfernte Objekte gegenseitig an, wenn sich etwas zwischen ihnen befindet. Auch ist keine kleinste Menge Gravitation nachgewiesen. Sie nimmt scheinbar beliebige Werte an und sogar sehr leichte Elementarteilchen unterliegen der Gravitation.

Alle Versuche einer renormierbaren Quantenfeldtheorie der Gravitation sind gescheitert; die Ultraviolettdivergenzen der Theorien ließen sich nicht beseitigen, auch nicht durch Übergang auf die supersymmetrische Formulierung der Supergravitation, bei der zusätzlich ein Spin-1½-Teilchen, das Gravitino, eingeführt wurde. Auch nicht durch Hinzufügen weiterer nichtphysikalischer Dimensionen, die unter anderem die Nicht-Abschirmbarkeit erklärt hätten, da Hindernisse in einem dreidimensionalen Raum aus einem höherdimensionalen Raum betrachtet keine Hindernisse mehr darstellen. Solomon Deser brachte diese negativen Ergebnisse 1999 zum Abschluss, durch Nachweis der Nichtrenormierbarkeit der „Last-Hope“-Supergravitation in ganzen 11 Dimensionen.

Bei den zwei bislang rein hypothetischen Kandidaten einer Theorie der Quantengravitation, der Stringtheorie und der Loop-Quantengravitation, ergibt sich die Existenz eines Gravitons im Falle der Stringtheorie zwangsläufig, die Lage in der Loop-Quantengravitation ist weniger klar. Beide Theorien sind bislang nicht so weit entwickelt, dass sie experimentell bestätigt oder widerlegt werden könnten. So ist die Frage nach der Existenz eines Teilchens, das die Gravitationskraft trägt, weiter offen.

 
Dieser Artikel basiert auf dem Artikel Graviton aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.