Meine Merkliste
my.chemie.de  
Login  

Resistiver Schaltmechanismus aufgeklärt

21.04.2017

Copyright: Forschungszentrum Jülich/Regine Panknin

Blick ins Photoemissionsmikroskop: Im sogenannten NanoESCA werden resistive Speicherelemente mittels energiegefilteter Photoelektronenemissionsmikroskopie abgebildet. So können die Jülicher Forscher die genaue chemische Zusammensetzung der Probe mit hoher Ortsauflösung messen, um die Funktion der Bauelemente möglichst genau zu verstehen.

Copyright: Forschungszentrum Jülich

Im Transmissionselektronenmikroskop wird das Bauelement mit einer beweglichen Mikro-Spitze kontaktiert. Wenn positive Spannungen angelegt werden, wird Sauerstoff (blaue Kugeln) ausgebaut, es bleiben Sauerstoffleerstellen (grüne Kugeln) zurück. Bei negativer Spannung wird der Sauerstoff wieder eingebaut.

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft. Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den Forschern Rätsel auf. Das macht die Vorhersage von Schalteigenschaften schwierig – die Speichertechnologie wird deshalb weitgehend nach Erfahrungswerten optimiert. Ein interdisziplinäres Forscherteam aus Jülich, Aachen und Grenoble hat nun mithilfe eines Elektronenmikroskops den Schaltmechanismus entschlüsselt.

Memristive Speicherbauelemente gelten als Logik- und Speicherbauelemente der Zukunft. Sie sind äußerst schnell, energiesparend und nichtflüchtig: Die gespeicherten Informationen bleiben auch bei Stromausfall erhalten. Sie lassen sich außerdem sehr gut bis in den Nanometerbereich verkleinern. Darüber hinaus sind sie wie geschaffen für die Verschaltung zu sogenannten neuromorphen Systemen, die Daten mit Methoden verarbeiten, die denen des Gehirns nachempfunden sind.

Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, sondern lässt sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen. So stellt beispielsweise ein niedriger Widerstand die logische „1“ und ein hoher Widerstand die logische „0“ dar. Mehr Symbole braucht es nicht, um alle Informationen in einem binären Code abzuspeichern.

Noch ist die Technologie allerdings nicht ausgereift genug, um die gängigen Speichertypen zu verdrängen. Die chemischen Reaktionen auf der Nanometerskala, die man als den Ursprung des Schaltens vermutet, sind experimentell nur schwer nachweisbar. Ohne genaue Kenntnis über diese Vorgänge sind die Speicher aber nicht optimal einsetzbar.

Unters Elektronenmikroskop gelegt

Die Forscher unter der Leitung von Prof. Rainer Waser haben in den vergangenen Jahren bereits maßgeblich dazu beigetragen, die mikroskopischen Mechanismen des Schaltverhaltens aufzuklären. Im Rahmen des Sonderforschungsbereichs "Nanoswitches" konnten sie nun auf der Nanometerskala die Vorgänge klären, die beim Betrieb der Speicher ablaufen.

"Bisher dachte man, dass während des Schaltens Sauerstoffleerstellen in der Oxidschicht hin- und her wandern", erklärt Prof. Regina Dittmann vom Jülicher Peter Grünberg Institut. "Doch dieser Mechanismus konnte das Schalten in unseren Zellen nicht erklären. Deshalb haben wir die Bauelemente in einem Transmissionselektronenmikroskop untersucht." Dort kann man mithilfe sogenannter hochauflösender Elektronenenergieverlustspektroskopie geringe Änderungen der chemischen und elektronischen Struktur mit atomarer Auflösung betrachten.

"So haben wir entdeckt, dass sich während des Schaltens die gesamte Sauerstoffkonzentration in der sogenannten aktiven Schicht ändert", so Dittmann weiter. „Durch das Anlegen von elektrischer Spannung wird also eine Elektrokatalyse in Gang gesetzt, die für einen ständigen Ein- und Ausbau von Sauerstoff in der Oxidschicht zwischen den beiden Elektroden sorgt – nicht unähnlich den Prozessen in einer Brennstoffzelle. Zusammen mit der lange vermuteten Umverteilung der Leerstellen verändert sich dadurch der Widerstand des Bauelements.“

Durch die neuen Erkenntnisse über die atomaren Vorgänge in den Speicherzellen, so erhoffen sich die Forscher, lassen sich die Eigenschaften zukünftiger Bauelemente gezielter einstellen. So können etwa durch den Ein- und Ausbau von Sauerstoff aus der aktiven Schicht deutlich höhere Unterschiede im elektrischen Widerstand erreicht werden, was die Integration der Zellen in komplexe Chips erleichtert.

Fakten, Hintergründe, Dossiers
  • Speicherzellen
Mehr über Forschungszentrum Jülich
  • News

    CO2 – vom Klimakiller zum chemischen Rohstoff

    Man nehme das schädliche Treibhausgas Kohlendioxid und verwandle es mithilfe regenerativ erzeugten Stroms in eine universelle Basis für die Herstellung von Kraftstoffen und die chemische Industrie. Das ist, stark verkürzt, das Ziel einer Gruppe von Verfahren, die auch als Co-Elektrolyse bez ... mehr

    Selbstlösendes Puzzle für organische Moleküle

    Mithilfe eines Tricks ist es Jülicher Forschern gelungen, organische Moleküle kontrolliert wachsen zu lassen. Eine Schlüsselrolle kommt dabei sich gegenseitig abstoßenden Molekülen zu. Aufgrund der entgegengesetzten Kräfte halten sie stets Abstand zum Nachbarn und lassen sich deshalb gut mi ... mehr

    Neue Elektronenquelle zur Materialbestimmung

    Jülicher Physikern ist es gelungen, die Bestimmung von Materialeigenschaften schneller und effizienter zu machen. Sie entwickelten eine spezielle Elektronenquelle, die die Vermessung von Materialoberflächen stark vereinfacht und die Dauer einer Messung von Tagen auf Minuten verkürzt. Wie la ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Die (R)Evolution der Elektronenmikroskopie - So funktioniert PICO

    Das Elektronenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern. Es ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen und Fortschritte in Bereichen wie der Energieforschung oder den Informationstec ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Erfolgreiche Wissenschaft braucht mehr als gute Forschung. Damit öffentliche Förderprogramme ihre Ziele erreichen, Industriepartner und Forschungseinrichtungen gewinnbringend zusammenarbeiten und Forscher über Fördermöglichkeiten in ihrem Arbeitsfeld gut informiert sind, ist Sachverstand im ... mehr

  • q&more Artikel

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.