Meine Merkliste
my.chemie.de  
Login  

Formgedächtnis-Legierung



Formgedächtnis-Legierungen (FGL, engl. shape memory alloy, SMA) werden oft auch als Memorymetalle bezeichnet. Dies rührt von dem Phänomen, dass sie sich an eine frühere Formgebung trotz nachfolgender starker Verformung scheinbar „erinnern“ können.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Einführung

 

Die Formwandlung basiert auf der temperaturabhängigen Gitterumwandlung zweier verschiedener Kristallstrukturen (allotrope Umwandlung) eines Werkstoffes. Es gibt die Austenit genannte Hochtemperaturphase und das Martensit (Niedertemperaturphase). Beide können durch Temperaturänderung ineinander übergehen (Zweiwegeffekt). Die Strukturumwandlung ist unabhängig von der Geschwindigkeit der Temperaturänderung. Zur Einleitung der Phasenumwandlung sind die Parameter Temperatur und mechanische Spannung gleichwertig; d. h. die Umwandlung kann nicht nur thermisch, sondern auch spannungsinduziert herbeigeführt werden.

Ein bekannter Vertreter für diesen Strukturwandel ist u. a. Eisen bzw. Stahl. Allerdings besitzt Stahl kein Formgedächtnis, es muss daher noch eine andere Bedingung erfüllt sein. Formgedächtnis-Legierungen brauchen in jedem Kristallsystem eine Reihe gleichberechtigter Schersysteme, die sich aus der Raumsymmetrie der Elementarzelle ergeben. Sind alle Scherungen bei einer Umwandlung gleich verteilt, ist keine äußere Formänderung zu erkennen. Werden aber beispielsweise durch äußere Kräfte nur einige Schersysteme bevorzugt, werden Formänderungen beobachtet.

Nutzbare Effekte

FGL können sehr große Kräfte ohne auffallende Ermüdung in mehreren 100.000 Bewegungszyklen übertragen. Sie bestechen durch ihr im Vergleich zu anderen Aktor-Werkstoffen mit Abstand größtes spezifisches Arbeitsvermögen (Verhältnis von geleisteter Arbeit zu Werkstoffvolumen).

Grundsätzlich können alle FGL alle FG-Effekte ausführen. Der jeweilig gewünschte Effekt ist Aufgabe der Fertigungs- und Werkstofftechnik und muss durch Abstimmung von Einsatztemperaturen und Optimierung der Effektgrößen antrainiert werden.

Einweg-(Memory)-Effekt

Der Einwegeeffekt ist durch eine einmalige Formänderung beim Aufheizen einer zuvor im martensitischen Zustand pseudoplastisch verformten Probe gekennzeichnet.

Zweiweg-(Memory)-Effekt

Wie oben beschrieben, gestattet der Einwegeffekt nur eine einmalige Formänderung. Das erneute Abkühlen bewirkt keine Formänderung. Will man nun Formgedächnis-Legierungen auch für die Aktorik, z. B. als Stellelement, nutzen, muss das Bauelement wieder in seine „Kaltform“ zurückkehren können. Es gibt zwei Arten, um eine Formrückkehr zu realisieren:

  • äußere Zweiwegeffekte (extrinsisch)
  • intrinsische Zweiwegeffekte

Als äußeren Zweiwegeffekt bezeichnet man die Formrückkehr beim Abkühlen eines Bauteils, die durch eine von außen wirkende (mechanische) Kraft erzwungen wird. Dies kann zum Beispiel durch eine Feder realisiert werden, die während des Erwärmens gespannt wurde.

Es gibt aber auch Formgedächtnis-Legierungen, die von sich aus die Formrückkehr vollziehen. Dies bezeichnet man als intrinsischen Zweiwegeffekt. Diese Legierungen können sich an zwei Formen – eine bei hoher und eine bei niedriger Temperatur – „erinnern“. Damit das Bauelement beim Abkühlen seine definierte Form wieder einnimmt, muss es durch thermomechanische Behandlungszyklen „trainiert“ werden. Dies bewirkt die Ausbildung von Spannungsfeldern im Material, die die Bildung von bestimmten Martensit-Varianten beim Abkühlen fördern. Somit stellt die trainierte Form für den kalten Zustand lediglich eine Vorzugsform des Martensit-Gefüges dar. Die Umwandlung der Form kann beim intrinsischen Zweiwegeffekt nur stattfinden, wenn keine äußeren Kräfte entgegenwirken. Daher ist das Bauelement beim Abkühlen nicht in der Lage, Arbeit zu verrichten.

Pseudoelastisches Verhalten („Superelastizität“)

Bei FGL kann zusätzlich zur gewöhnlichen elastischen Verformung, eine durch äußere Krafteinwirkung verursachte reversible Formänderung beobachtet werden. Diese „elastische“ Verformung kann die Elastizität konventioneller Metalle bis zum 20fachen übertreffen, d. h., es lässt sich ein Elastizitätsmodul angeben, der nur ein Zwanzigstel des bei Metallen üblichen Wertes beträgt. Die Ursache dieses Verhaltens ist jedoch nicht die Bindungskraft der Atome, sondern eine Phasenumwandlung innerhalb des Werkstoffes. Hierbei bildet sich unter äußeren Spannungen der kubisch-flächenzentrierte Austenit in den monoklinen Martensit um. Bei Entlastung wandelt sich der Martensit wieder in Austenit um. Da während der Umwandlung jedes Atom sein Nachbaratom beibehält, spricht man auch von einer diffusionslosen Phasenumwandlung. Deswegen wird die Eigenschaft als pseudoelastisches Verhalten bezeichnet. Das Material kehrt beim Entlasten durch seine innere Spannung wieder in seine Ursprungsform zurück. Dafür sind keine Temperaturänderungen erforderlich.

Der Effekt wird aus Vermarktungsgründen auch häufig als Superelastizität bezeichnet (Beispiel: biegsame, unzerbrechliche Brillengestelle). Der Begriff „Superelastizität“ selbst entstammt einem Übersetzungsfehler, der sich leider auch in einigen Fachartikeln wiederfindet, er ist jedoch eher irreführend, da für die gewöhnliche Elastizität und das pseudoelastische Verhalten nicht die selben Vorgänge verantwortlich sind.

Anwendung findet dieser Effekt u. a. auch im Bereich der Medizintechnik.

Werkstoffe

Anwendungsbeispiele

  • Die hohe Stellkraft wird in Hydraulikpumpen ausgenutzt.
  • Verschiedene Anwendungen als medizinische Implantate wurden entwickelt, so zum Beispiel für Stents, kleine Strukturen zur Stabilisierung von Arterien. Eindrucksvoll ist auch eine an der RWTH Aachen vorgestellte miniaturisierte Blutpumpe, die in komprimierter Form mittels eines Katheters in ein Blutgefäß nahe dem Herzen eingeführt wird und sich im Kontakt mit dem körperwarmen Blut in die als Pumpe wirksame Form entfaltet.
  • In der Weltraumtechnik werden Formgedächtnis-Materialien oft zum Entfalten der Sonnensegel und ähnlicher Aktivitäten verwendet, dabei wird hauptsächlich der Einweg-Effekt benutzt.
  • Nutzung der hohen Rückstellkräfte als Einsatz in Wärmekraftmaschine [1]
  • Als Stellglieder, wie Federn [1]
  • Adaptive Änderung von Tragflächen und Winglets an Flugzeugen [1]
  • Nutzung in der Endodontie zur Wurzelkanalbehandlung stark gekrümmter Wurzelkanäle, in denen eine Exstirpationsnadel aus Edelstahl brechen würde.

Literatur

  • Paul Gümpel (Hrsg.): Formgedächtnislegierungen. EXPERT-Verlag, 2004, ISBN 3-8169-2293-7
  • Matthias Mertmann: NiTi-Formgedächnislegierungen für Aktoren der Greifertechnik. VDI Verlag, 1997, ISBN 3-18-346905-7
  • Jörg Spielfeld: Thermomechanische Behandlung von Kupferlegierungen mit Formgedächnis. VDI Verlag, 1999, ISBN 3-18-355705-3

Fußnoten und Einzelnachweise

  1. a b c SMAterial.com – Applications (engl.)
 
Dieser Artikel basiert auf dem Artikel Formgedächtnis-Legierung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.