Meine Merkliste
my.chemie.de  
Login  

Mößbauer-Effekt



Unter dem Mößbauer-Effekt (nach dem Entdecker Rudolf Mößbauer, durch Rückübersetzung aus dem Englischen fälschlich auch Mössbauer-Effekt geschrieben) versteht man die rückstoßfreie Emission oder Absorption eines Gamma-Quants durch einen Atomkern. Dazu muss sich der Kern in einem Kristallgitter befinden, das den Rückstoß übernehmen kann und durch seine große Masse dem Gamma-Quant kaum Energie entzieht (siehe auch elastischer Stoß). Kombiniert man Emission und Absorption, erhält man eine extrem empfindliche Messmethode für die Energieänderung der Quanten. Rudolf Mößbauer erhielt für seine Entdeckung 1961 den Nobelpreis für Physik.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Die Natur der Gammastrahlung

Seit Beginn des 20. Jahrhunderts kennen Physiker die Gammastrahlung als einen Bestandteil der Radioaktivität. Als Entdecker gelten Antoine Henri Becquerel und Paul Villard, wobei letzterer um 1900 nachweisen konnte, dass es sich bei der Gammastrahlung um extrem energiereiche elektromagnetische Wellen handelt. Gammastrahlung entsteht u.a. in Folge eines Alpha- oder Betazerfalls, wenn sich der Atomkern in einem angeregten Zustand befindet.

Die Emission des Gamma-Quants verändert den Kern dabei nicht, d.h. anders als beim α- oder β-Zerfall findet keine Umwandlung in ein anderes Element oder Isotop statt. Lediglich die im Kern gespeicherte Energie wird als Strahlungsquant abgegeben, genau wie auch angeregte Elektronen ihre Energie in Form von Lichtquanten abgeben. Atomkerne im Grundzustand können ein Gamma-Quant auch absorbieren, wodurch sie wieder in den angeregten Zustand übergehen.

Aus theoretischen Überlegungen folgerte man früh, dass die von den meisten Kernen emittierte Gammastrahlung durch sehr scharfe Energieniveaus gekennzeichnet ist und somit eine sehr geringe Linienbreite haben muss. Man kann Atomkerne auch mit einem Schwingquarz vergleichen, der nur mit einer bestimmten Frequenz angeregt werden kann. Tatsächlich ist die Energiekonstanz (und damit die Frequenzgenauigkeit) vieler Gamma-Strahlungsübergänge vergleichbar mit der Genauigkeit von Atomuhren.

Die Ausgangssituation vor Mößbauer

Die theoretisch vorausgesagte spektrale Reinheit der Gamma-Strahlung war vor der von Mößbauer gemachten Entdeckungen praktisch nicht nachweisbar. Aufgrund der hohen Energie der Gamma-Quanten kann man deren Frequenz nur recht grob durch kalorimetrische Methoden bestimmen. Ein elektronischer Frequenzzähler funktioniert im Frequenzbereich der Gamma-Strahlung nicht mehr.

Darüberhinaus erfährt der Kern beim Aussenden eines Gamma-Quants einen nicht zu vernachlässigenden Rückstoß. Dies liegt an der hohen Energie der Quanten, die zwar wie alle Photonen masselos sind, aber durchaus einen von Null verschiedenen Impuls besitzen. Der auf den Kern wirkende Rückstoß wird der Energie des Gamma-Quants abgezogen, auch erklärbar durch die Doppler-Frequenzverschiebung des sich nun bewegenden Kerns. Soll nun ein Kern das von einem anderen Kern emittierte Gamma-Quant wieder absorbieren, so ist dies eigentlich nur dann möglich, wenn zuvor beide Kerne genau mit der doppelten Rückstoßgeschwindigkeit aufeinander zugeflogen sind (doppelt, weil auch bei der Absorption ein gleich starker Rückstoß erfolgt).

Mößbauers Experiment

Mößbauer wollte im Rahmen seiner Dissertation die Wahrscheinlichkeit für eine solche Emission und anschließende Absorption eines Gamma-Quants ermitteln. Die Voraussetzung, dass die beiden beteiligten Kerne sich mit der richtigen Geschwindigkeit aufeinander zubewegen, sollte durch die Wärmebewegung der Atome erfüllt werden.

Hier der schematische Versuchsaufbau seines Experimentes:


Auf der linken Seite befindet sich eine radioaktive Quelle für Gamma-Strahlen. Einige der Strahlen treffen rechts auf einen Absorber, der die gleichen Atome wie die Quelle enthält, diese sind jedoch von sich aus nicht radioaktiv. Wird nun ein Kern im Absorber von einem Gamma-Photon getroffen, so kann, falls oben genannte Voraussetzung erfüllt ist, das Gamma-Photon zum Detektor hin gestreut werden. Der direkte Weg der Strahlung zum Detektor wird durch eine Abschirmung aus Blei blockiert.

Die Temperatur von Festkörpern, Flüssigkeiten und Gasen ist korreliert mit der Geschwindigkeit der Teilchen (Atome, Moleküle) in denselben. Je höher die Temperatur, desto schneller bewegen sich die Teilchen im Mittel. Allerdings ist die Geschwindigkeit aller Teilchen nicht gleich, sondern statistisch verteilt, ebenso wie die Bewegungsrichtungen der Teilchen.

Mößbauer erwartete, dass mit steigender Temperatur die Wahrscheinlichkeit für eine Emission und anschließende Absorption eines Gamma-Quants ansteigen sollte, da sich statistisch gesehen mehr Atome mit der richtigen Geschwindigkeit aufeinander zubewegen. Umgekehrt sollte sich bei sehr niedrigen Temperaturen die Wahrscheinlichkeit für diesen Vorgang nahezu auf Null verringern, da die Atome im Mittel so langsam sind, dass die erforderliche Geschwindigkeitsdifferenz kaum einmal erreicht wird.

Das zunächst überraschende Ergebnis

Die ersten Messungen nahe der Zimmertemperatur und darüber schienen Mößbauers Erwartungen zunächst zu bestätigen. Als er jedoch aus Neugier begann, Quelle und Absorber abzukühlen, stellte er überraschend fest, dass die Wahrscheinlichkeiten für die Gamma-Emission/Absorption bei tiefen Temperaturen plötzlich wieder steil anstiegen und zwar über das Maß hinaus, welches bei höheren Temperaturen gemessen worden war.

Was war geschehen?

Mößbauer führte seine Experimente an Festkörpern durch. In diesen schwingen die Atome um ihre Ruhepositionen im Kristallgitter (bei steigender Temperatur mit zunehmender Amplitude). Jedoch sind aufgrund der Quantenmechanik nicht alle Schwingungszustände erlaubt, sondern nur diskrete Energiezustände (Phononen). Aus diesem Grund kann der Kern bei der Emission und Absorption eines Gamma-Quants keinen beliebig starken Impuls in Form von Schwingungsenergie abgeben. Da die Aufnahme und Abgabe der Schwingungsenergie gequantelt ist, besteht eine bestimmte Wahrscheinlichkeit (gegeben durch den sog. Debye-Waller-Faktor), dass das Atom keine Schwingungsenergie erzeugt und seinen Rückstoßimpuls an das gesamte Kristallgitter(*) übertragen kann. Da dessen Masse die des Kerns wesentlich übersteigt, erfolgen Gamma-Emission und Absorption in diesem Fall nahezu rückstoßfrei.

  • Anmerkung: Der Bereich des Kristallgitters, der Rückstoßenergie aufnehmen kann, ergibt sich grob aus dem Volumen der Kugel, deren Radius der Entfernung entspricht, die der Schall in diesem Gitter während der mittleren Lebensdauer des Gamma-Übergangs zurücklegen kann.

Anwendungen des Mößbauereffekts

Durch den Mößbauer-Effekt ergeben sich völlig neuartige Messverfahren auf den Gebieten der Festkörperphysik, Materialforschung und Chemie. Des Weiteren können auch Vorhersagen der allgemeinen Relativitätstheorie mit diesem Effekt untersucht werden. So wurde 1962 in einem Mößbauer-Experiment von Robert Pound und Glen Rebka festgestellt, dass, wenn sich Quelle und Absorber in rund 20 Metern Abstand senkrecht voneinander entfernt befinden, das Gravitationspotential der Erde zu einer messbaren Energieänderung der Quanten beim Durchlaufen des Höhenunterschiedes führt (Pound-Rebka-Experiment).

Die vielfältigsten Anwendungen findet der Mößbauer-Effekt heute in der Chemie. Da die Ausprägung der Elektronenhülle eines Moleküls geringfügig auf die Energieniveaus der Anregungszustände seiner Atomkerne zurückwirkt, hat sich der Mößbauer-Effekt zu einem unersetzlichen Instrument in der chemischen Analyse entwickelt (siehe hierzu: Mößbauer-Spektroskopie).

 
Dieser Artikel basiert auf dem Artikel Mößbauer-Effekt aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.