Meine Merkliste
my.chemie.de  
Login  

Magnetosphäre



  Als Magnetosphäre bezeichnet man das Raumgebiet um ein astronomisches Objekt, in dem das Magnetfeld des Objekts dominiert, ihre scharfe äußere Begrenzung wird Magnetopause genannt. Die innere Begrenzung zur neutralen Atmosphäre bildet die Ionosphäre. Neben der Magnetosphäre der Erde wurden auch die Magnetosphären des Jupiter und des Saturn durch die Raumsonden Ulysses (1992), Galileo (1995 bis 2003) und Cassini (seit 2004) näher untersucht. Im folgenden wird exemplarisch die Magnetosphäre der Erde beschrieben.

Inhaltsverzeichnis

Struktur

  Eine planetare Magnetosphäre wird vor allem durch den auftreffenden Sonnenwind geformt, der in Erdnähe eine Geschwindigkeit von 300 bis 800 km/s und eine Dichte von 3 bis 10 Teilchen pro Kubikzentimeter aufweist und das interplanetare Magnetfeld von etwa 4 nTesla trägt, und enthält ein nahezu stoßfreies Plasma niedriger Dichte. Der Sonnenwind staucht die Magnetosphäre auf der Sonnenseite auf etwa 10 Erdradien (etwa 60.000 km) zusammen und zieht sie auf der Nachtseite zu einem kometenschweifähnlichen Magnetschweif auseinander, der bis in eine Entfernung von etwa 100 Erdradien (600.000 km) reichen kann. Die Form der Magnetopause ist jedoch nicht statisch, sondern ändert sich zeitlich sehr stark – während der Schweif durch die wechselnde Magnetfeldrichtung des Sonnenwinds regelrecht im Sonnenwind „flattert“, ist die Ausdehnung auf der Tagseite vom Impuls des Sonnenwinds abhängig. Messungen der Cluster Satelliten zeigen weiterhin Gasblasen mit Temperaturen von bis zu zehn Millionen Grad die sich ständig von der Magnetosphäre lösen. Bei einem stärkeren magnetischen Sturm am 10. Januar 1997 wurde die Magnetosphäre auf 5 Erdradien (etwa 30.000 km) zusammengestaucht, Satelliten in geostationärer Umlaufbahn befanden sich deshalb bei starken magnetischen Stürmen zeitweise außerhalb der Magnetosphäre und sind in diesem Zeitraum dem Sonnenwind direkt ausgesetzt.

Der Sonnenwind umströmt die Erde mit Überschallgeschwindigkeit und wird an der Bugstoßwelle auf Unterschallgeschwindigkeit abgebremst, den Bereich zwischen der Bugstoßwelle und der Magnetopause nennt man auch Magnetosheath. Die Schallgeschwindigkeit stellt bei dieser Betrachtung ebenfalls wie in Luft diejenige Geschwindigkeit dar, mit der sich beispielsweise Druckstörungen fortbewegen, auch wenn Schall im akustischen Sinne nicht im Weltall existiert. Ein Teil des Sonnenwinds wird an der Bugstoßwelle auch reflektiert, so dass sich ein Vorschock ausbildet.

Die Magnetfeldlinien sind auf der Tagseite geschlossen und in den äußeren Bereichen des Magnetschweifes (den nördlichen und südlichen Tail Lobes) offen, den Übergangsbereich an den magnetischen Polen nennt man Cusp oder Cleft - in diesen Bereichen können Teilchen des Sonnenwinds direkt in die inneren Schichten der Atmosphäre eindringen. Zwischen den Lobes befindet sich in Erdnähe die Plasmaschicht mit geschlossenen Feldlinien und die Neutralschicht in größeren Entfernungen.

Ströme

Die Wechselwirkung des Magnetfelds des vorbeistömenden Sonnenwinds und des irdischen Magnetfelds führt zu einem Dynamoeffekt, wobei die Erde den Stator und der Sonnenwind den Rotor bildet. Diese Wechselwirkung führt zu einer Energieübertragung an die Magnetosphäre und zu einem komplexen System elektrischer Ströme.

Die äußeren Schichten der Atmosphäre enthalten stark verdünntes Plasma, dessen geladene Teilchen sich entlang der Magnetfeldlinien auf Spiralbahnen bewegt. Durch diese Bewegung wird in der Neutralschicht ein Neutralschichtstrom induziert. In der Plasmaschicht wird zusammen mit dem Erdmagnetfeld der Ringstrom gebildet.

Birkeland-Ströme

Den Hauptanteil der induzierten Ströme bilden die Birkeland-Ströme (nach Kristian Birkeland, 1867 - 1917), die aus Elektronen bestehen, die sich aufgrund der Lorentzkraft in Spiralen um die von Nord- nach Südpol verlaufenden Magnetfeldlinien bewegen. Diese Teilchen bewegen sich praktisch stoßfrei in den Strahlungsgürteln (den so genannten Van-Allen-Gürteln) der äußeren Atmosphäre und werden aufgrund der Erhaltung des magnetischen Moments bei Annäherung an die magnetischen Pole reflektiert und bewegen sich wieder auf den anderen Pol zu.

Bei erhöhter Sonnenaktivität befinden sich mehr und energiereichere freie Elektronen in den oberen Atmosphärenschichten, so dass die an die Atome der Atmosphäre in etwa 100-150 km Höhe stoßen, und diese anregen. Das führt zu Leuchterscheinungen, den Polarlichtern.

Pedersenströme

Die Birkeland-Ströme werden in etwa 100 bis 150 km Höhe durch die Pedersenströme geschlossen. Die Stromdichten liegen bei einigen Ampere pro Quadratmeter, was zu einen Gesamtstrom von einigen 10.000 Ampere führt.

Ringstrom

Der irdische Ringstrom ist ein elektrischer Strom, der die Erde entlang des Van-Allen-Gürtels in der Äquatorebene in Ost-West-Richtung umfließt. Er wird getragen von Ionen mit etwa 15 bis 200 keV, die bei der Ionisation von Luftteilchen durch die kosmische Strahlung entstehen. Diese Teilchen bewegen sich jedoch nicht nur in Spiralbahnen um die Feldlinien, sondern führen auch eine Driftbewegungen aus. Die Elektronen bewegen sich dabei von West nach Ost, die Protonen von Ost nach West. Das führt zu einem effektiven Strom in Ost-West-Richtung. Die Ausdehnung dieses Ringstromes reicht von etwa 2 bis zu etwa 9 Erdradien. Obwohl die typischen Stromdichten nur wenige Zehntel Ampere pro Quadratmeter betragen, resultieren aufgrund des enormen Volumens Ströme von mehreren Millionen Ampere.

Der Ringstrom wird in ruhigen Phasen vorwiegend aus der Plasmaschicht gespeist, die Energiedichte wird dabei zu mehr als 90 % von Wasserstoffionen getragen. Während magnetischer Stürme gewinnen jedoch Sauerstoffionen aus den oberen Schichten der Atmosphäre an Bedeutung und können bei starken Stürmen den Hauptteil des Stroms tragen.

Polarer Elektrojet

Die Pedersenströme führen zu einem Hallstrom in Ost-West-Richtung, der als polarer Elektrojet bezeichnet wird. Der Elektrojet kann bei magnetischen Stürmen Stromstärken von mehr als eine Million Ampere erreichen und kann sich auf Zeitskalen von Minuten sehr stark ändern. Zusammen mit den Pedersenströmen führt dies zu einem stark fluktuierenden Feld auf der Erdoberfläche, das vor allem in langen Leitern wie Hochspannungsleitungen und Pipelines starke Ströme induziert, die zur Beschädigung oder Zerstörung elektrischer Bauteile beziehungsweise zu verstärkter Korrosion führen können.

Da die Atmosphäre in etwa 100 km Höhe kein sehr guter Leiter ist, führen die Pedersenströme und die Elektrojets auch zu einer starken Aufheizung der Atmosphäre, die zu einer starken Ausdehnung führt - einige Stürme führten im Bereich von Satelliten auf niedrigen Umlaufbahnen (bis etwa 800 km) zu einer Verdopplung der Luftdichte und einer entsprechend höheren Abbremsung durch den höheren Luftwiderstand, ebenso führt diese Ausdehnung zum verstärkten Eintrag von Sauerstoffionen in den Ringstrom.

Plasmoide

Der Sonnenwind und die Ströme in den Tail Lobes führen zu starken Verzerrungen der Feldlinien in der Plasmaschicht des Magnetschweifs. Wenn diese Verzerrungen zu stark werden (die Vorgänge sind im Detail noch nicht verstanden), kann es zu Abschnürungen durch magnetische Rekonnexionen kommen - die erdnäheren Teile der Feldlinien schließen sich zu dipolähnlicheren Feldlinien, während die erdferneren Teile ein Plasmoid bilden, ein plasmagefülltes Raumgebiet mit in sich geschlossenen Feldlinien. Durch die freiwerdende magnetische Energie wird zum einen das Plasmoid nach außen beschleunigt, zum anderen führt es zu einer Aufheizung höherer Atmosphärenschichten und damit zu einer verstärkenden Rückkopplung mit dem elektrischen Strömungssystem.

Der Vorgang der Plasmoid-Ablösung wird als magnetischer Teilsturm (substorm) bezeichnet, da man sie anfangs nur als Teilkomponente magnetischer Stürme betrachtete. Heute weiß man allerdings, dass der Teilsturm ein Phänomen ist, das nicht nur in „Sturmphasen“, sondern auch in ruhigen Phasen auftritt – der Verlauf ist in beiden Fällen sehr ähnlich: ein Teilsturm dauert etwa 45 Minuten und führt zu einer Plasma-Aufheizung von etwa 2 keV. Während einer Sturmphase ist jedoch das Plasma bereits zu Beginn heißer (etwa 3-4 keV in Ruhephasen und etwa 8 keV in Sturmphasen) und der Anstieg verläuft steiler.

Sonstiges

Änderungen im Sonnenwind können magnetosphärische Vorgänge auslösen, die die Kommunikation über Radio beeinflussen, Schaden an Satelliten verursachen und elektrische Leitungen unterbrechen können.

Bei der Erde ist die Stoßfront im Durchschnitt etwa 10 Erdradien entfernt. Die größte Magnetosphäre im Sonnensystem besitzt allerdings der Jupiter. Hier beträgt der Abstand Planet-Stoßfront zeitweise bis zu 100 Jupiterradien.

Quellen

  • Forschungsinfo des MPI für Sonnensystemforschung
 
Dieser Artikel basiert auf dem Artikel Magnetosphäre aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.