Meine Merkliste
my.chemie.de  
Login  

Strahlungsdetektor



Ein Strahlungsdetektor ist ein Bauteil zur Messung elektromagnetischer Strahlung. Je nach Bauweise des Detektors kann Strahlung unterschiedlicher Wellenlänge nachgewiesen werden.

Weiteres empfehlenswertes Fachwissen

Die Funktionsweise eines Strahlungsdetektors beruht auf elektromagnetischen Wechselwirkungen der Photonen, also der Feldquanten des elektromagnetischen Feldes, mit den Elektronen oder Atomkernen des Detektormaterials (häufig Edelgase oder Halbleiter).

Je nach Detektorart macht man sich verschiedene Wechselwirkungsmechanismen zunutze.

Am häufigsten ist die Wechselwirkung mit den Elektronen (der Fotoeffekt). Ist die Energie des Photons gleich groß oder größer als die Bindungsenergie des Elektrons, so kann das Elektron durch das Photon aus dem Atomverbund gelöst werden. Dieses Elektron lässt man durch Anlegen eines elektrischen Feldes zur Anode driften, und dort lässt es sich durch die Messung des elektrischen Stroms oder der elektrischen Ladung nachweisen. Das Licht im sichtbaren und nahen Infrarotbereich kann die relativ schwach gebundenen Valenzelektronen herausschlagen, die deutlich höherenergetische Röntgen- und Gammastrahlung wechselwirkt überwiegend mit den stärker gebundenen inneren Elektronen.

Die Energie des Elektrons ist gleich der Differenz der Energie des einfallenden Photons und der Bindungsenergie des Elektrons. Ist die Energie des Elektrons hoch genug, so kann es weitere Atome ionisieren, so dass zahlreiche Elektronen frei werden und nachgewiesen werden können. Bei Röntgenstrahlung ist die Anzahl der generierten Elektronen proportional zur Energie des einfallenden Photons.

Beispiele

  • Fotozellen zum Nachweis von Licht (NIR bis UV) und dessen Quantenenergie
  • Fotomultiplier als hochempfindliche Detektoren (bis zum Einzelphotonennachweis) für NIR bis UV, gekoppelt mit Szintillatoren auch für hochenergetische Strahlung (Röntgen- oder Gammastrahlung)
  • Charge-coupled Devices zum ortsaufgelösten Nachweis von sichtbarem Licht, NIR und UV
  • Geiger-Müller-Röhren zum Nachweis der meisten Arten radioaktiver Strahlung
  • Halbleiterdetektoren aus Silizium oder Germanium, sehr gute Energieauflösung und Empfindlichkeit (Nachweiseffizienz) vom Infrarot- bis in den Gammabereich (siehe auch Fotowiderstand und Fotodiode).
  • Bolometer und pyroelektrische Sensoren (z. B. in Niedertemperatur-Pyrometern) weisen die Strahlung aufgrund der von ihr hervorgerufenen Temperaturunterschiede nach.
  • Fotoplatten oder -filme, in denen die Strahlung bleibende chemische Veränderungen bewirkt, die sich durch die Entwicklung sichtbar machen lassen.
  • IR-Sensorkarten wandeln infrarote Strahlung durch nichtlineare Effekte in sichtbares Licht um
  • Szintillationszähler wandeln die Energie, die die Wechselwirkung hochenergetischer Quanten oder Elementarteilchen in einem Szintillator freisetzt, in Lichtblitze um und messen über die Lichtmenge pro Blitz auch deren Quanten- oder Teilchenenergie.

Siehe auch

  • Dosimeter
  • Teilchendetektor
 
Dieser Artikel basiert auf dem Artikel Strahlungsdetektor aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.