Meine Merkliste
my.chemie.de  
Login  

Die Nadel im Heuhaufen immer gezielter suchen: Selektive Oberflächen „fischen“ Phosphoproteine

23.07.2009

Die Proteomik ist eine noch junge Technologie, die sich mit der systematischen Erforschung der Eiweißstoffe in biologischen Systemen beschäftigt. Sie analysiert Art und Menge der vorhandenen Proteine und in welchen „Teams“ sie zusammenwirken. Die in Österreich tätigen Experten auf diesem Fachgebiet arbeiten seit 2003 in der Österreichischen Proteomik Plattform (APP) zusammen. Die zweite Phase dieses Programms war so erfolgreich, dass nun eine dritte Periode anläuft. Insbesondere auf dem Gebiet der Phosphoproteomik konnten die APP-Forscher wichtige Ergebnisse erzielen.

Die Phosphoproteomik untersucht Eiweißstoffe, die mit einer oder mehreren Phosphatgruppen versehen sind. Das Anhängen und Abhängen von Phophatgruppen an Eiweißstoffe ist einer der wichtigsten Mechanismen zur Feinregulierung zellulärer Abläufe. Auf diese Weise wird die Aktivität von Proteinen gesteuert. Auch werden Signalwege, die zu Wachstum, Reifung oder Tod einer Zelle führen, durch Phosphorilierung an- oder ausgeschaltet. Zu verstehen, welche Proteine, wann, wo und wie phosphoriliert werden, ist daher einer der Schlüssel zur Erforschung natürlicher Systeme. Auch bei der Entstehung vieler Krankheiten, vor allem von Krebs, spielen fehlgesteuerte Phosphoproteine eine entscheidende Rolle.

Die Phosphorilierung ist eine sehr effiziente und gezielte Maßnahme. Sie setzt an jenen Proteinen an, die wichtige Schaltstellen einnehmen. Für Analytiker ist dies ein Problem, denn die interessanten Phosophoproteine sind nur in sehr geringen Mengen vorhanden. Sie unter den immensen Mengen anderer Proteine aufzuspüren ist so schwierig, wie die sprichwörtliche Nadel im Heuhaufen zu finden.

Gesuchte Eiweißstoffe bleiben in Pipettenspitzen hängen

Im Rahmen des APP-Programms haben Wissenschaftler um Prof. Dr. Günther Bonn vom Institut für Analytische Chemie und Radiochemie der Leopold Franzens Universität Innsbruck ein Verfahren entwickelt, mit dessen Hilfe die Suche leichter geht. Bonn und seine Mitarbeiter sind Spezialisten für das Design von analytischen Oberflächen mit spezifischen Bindungseigenschaften. Diese Oberflächen sind chemisch so gestaltet, dass nur ganz bestimmte Moleküle an ihnen anhaften. Leitet man ein komplexes Stoffgemisch an so einem Trägermaterial vorbei, werden die gewünschten Stoffe herausgefischt.

Ein solches Trägermaterial haben Bonns Mitarbeiter für Phosphoproteine gestaltet. Sie haben Pipettenspitzen innen mit einem Kunststoffpolymer ausgekleidet, das nicht nur einen Kanal zum Aufziehen der Flüssigkeit freilässt – das Polymer selbst ist auch von winzigen Kanälen und Poren durchzogen. In diesem Polymer sitzen Nanopartikel von Titan- und Zirkoniumdioxid. Diese sind in der Lage, Phosphoproteine zu binden, und zwar spezifischer als das mit bisherigen Materialien möglich gewesen ist. Mit derartigen Pipettenspitzen kann man also, vereinfacht gesagt, einen Tropfen Flüssigkeit aufsaugen – die Phosphoproteine bleiben in der Spitze kleben – und die Flüssigkeit wird ohne Phosphoproteine wieder entlassen. Die Phosphoproteine können anschließend mit einer anderen Lösung aus der Pipettenspitze ausgespült und in weiteren Verfahren quantitativ und qualitativ analysiert werden. „Diese Arbeit ist ein methodischer Durchbruch“, urteilt Prof. Lukas Huber, der die Proteomik-Plattform leitet, und der bereits in seiner eigenen Forschung gute Erfahrungen mit den von Bonns Gruppe kreierten Pipettenspitzen gemacht hat.

Originalveröffentlichung: Rainer M. et al.; Proteomics 2008, 8, 4593 - 4602

Fakten, Hintergründe, Dossiers
  • Österreich
  • Universität Innsbruck
  • Titan
Mehr über Universität Innsbruck
  • News

    Wie ein Molekül das Klima verändern kann

    Wolken entstehen aus Wassertröpfchen, die sich um Aerosolpartikel in der Atmosphäre bilden. Luftschadstoffe tragen zur Entstehung dieser Aerosole wesentlich bei. Nun haben Wissenschaftler aus Frankreich, Japan und Österreich im Labor einen bisher völlig unbekannten Prozess entdeckt: Die Bil ... mehr

    Quantenmaterie fest und supraflüssig zugleich

    Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebi ... mehr

    Neuer LED-Leuchtstoff spart Energie

    Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weiße ... mehr

  • Videos

    Physik: Quantensysteme kontrollieren

    Wie wird die Erde der Zukunft aussehen? Technologie wird zum Einsatz kommen, die uns Menschen ungeahnte Möglichkeiten geben wird. Einen wesentlichen Beitrag dazu liefert die Quantenphysik. In Innsbruck arbeiten Wissenschaftler heute schon an den Grundlagen der Welt von Übermorgen, am Instit ... mehr

    Chemie: Pollen mit flexibler Wirkung

    Wenn im Frühling die Bäume blühen, dann leiden Allergiker an Heuschnupfen. Jeder fünfte Mitteleuropäer ist beispielsweise auf Birkenpollen allergisch. Pollen sind mikroskopisch kleine, kugelige Gebilde. Sie sind unter anderem aus verschiedenen Eiweißbausteinen aufgebaut, und einige dieser P ... mehr

  • q&more Artikel

    Wissen statt Nichtwissen

    Biologie ist naturgemäß komplex und selbst die Ergebnisse einfachster biochemischer Experimente sind mit nicht zu vernachlässigendem experimentellen Rauschen behaftet. Biochemische Messungen sind jedoch das Rückgrat moderner Pharmaforschung. Wird die experimentelle Unsicherheit bei der Plan ... mehr

  • Autoren

    Prof. Dr. Christian Kramer

    Jg. 1980, studierte Molecular Sciences in Erlangen und Zürich. Er promovierte von 2007–2009 an der Universität Erlangen in enger Zusammenarbeit mit Boehringer-Ingelheim/Biberach über neue QSAR- und QSPR-Methoden zu statistischen Vorhersagen von physikochemischen und biochemischen Eigenschaf ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.