Meine Merkliste
my.chemie.de  
Login  

Wie Moleküle im Laserfeld wippen

21.01.2019

MBI Berlin

Experimentell gemessene transiente Veränderung der Absorption im XUV in der Spektralregion, in der die Übergänge vom 4d-Kern in Iod in die Valenzschale (σ*) und in die Rydbergschale in CH3I Molekülen liegen. Wohlausgeprägte Oszillationen, mit der doppelten Laserfrequenz und damit kürzer als ein optischer Zyklus, sind beobachtbar in der Spektralregion der Kern-zu-Rydberg-Übergänge, während die Kern-zu-Valenz-Übergänge nur schwach vom Feld beeinflusst werden. Der beobachtete Effekt kann auf die höhere Polarisierbarkeit der Rydbergzustände zurückgeführt werden, welcher die Laser-Materiewechselwirkung begünstigt.

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert. Dieses sehr universelle physikalische Prinzip liegt vielfältigen Phänomenen zu Grunde. Hierzu zählen sowohl optische Pinzetten, für die Arthur Ashkin den Physiknobelpreis 2018 erhalten hat, als auch die räumliche Ausrichtung von Molekülen mit Hilfe eines Laserfeldes. Jetzt berichten Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im “The Journal of Physical Chemistry Letters” von einem Experiment, das die getriebene Dipol-Antwort im Detail untersucht. Dabei werden verschiedene elektronische Zustände in einem Methyliodid-Molekül aufgelöst.

Bei der Arbeit handelt es sich um die erste Studie eines mehratomigen Moleküls mittels transienter Absorptionsspektroskopie auf Attosekunden-Zeitskalen (ATAS). In einem ATAS-Experiment wird die Absorption von Photonen im extremen ultravioletten (XUV) Spektralbereich, die Bestandteil eines isolierten Attosekundenpulses oder Pulszuges sind, in der gleichzeitigen Anwesenheit eines intensiven infraroten Laserfeldes untersucht. Dabei wird die Verzögerung zwischen Attosekundenpuls und Infrarotfeld systematisch variiert. Indem ein solches Experiment mit Molekülen durchgeführt wurde, konnten die Forscher vom MBI ein System untersuchen, in dem Übergänge von den Atomkernen in die Valenzschale und Übergänge von den Atomkernen in die Rydbergschale spektral unmittelbar benachbart sind. “Zunächst waren wir überrascht festzustellen, dass das Infrarotfeld des Lasers vor allem auf die schwachen Kern-Rydberg-Übergänge einen Einfluss hat, während die starken Kern-Valenzübergänge, die die Absorption im XU Methyliodid-Moleküls bestimmen, auf das Feld wenig ansprechen”, sagt Lorenz Drescher, Wissenschaftler am MBI. Die nun veröffentlichte Arbeit ist Teil der Forschungen im Rahmen seiner Doktorarbeit.

Begleitende numerische Simulationen zeigten, dass die Rydbergzustände die laser-induzierte Absorption aufgrund ihrer hohen Polarisierbarkeit dominieren. Interessant ist auch, dass die nun vorgestellte Studie einen Ausblick in die Zukunft bietet. “Wenn man mit dem XUV-Spektrum verschiedene Absorptionskanten abdeckt, kann unsere Methode Moleküldynamik aus der Perspektive verschiedener Beobachteratome innerhalb eines Moleküls abbilden”, erklärt MBI-Wissenschaftler Dr. Jochen Mikosch. “Mit der Etablierung von Attosekunden-XUV-Quellen im spektralen Wasserfenster wird ATAS von lichtinduzierten Wechselwirkungen in Molekülen vermutlich ein Werkzeug werden, um ultraschnelle Phänomene in organischen Molekülen zu untersuchen”, ergänzt er. In diesem Wellenlängenbereich gibt es Übergänge von Kernzuständen in Stickstoff-, Kohlenstoff- und Sauerstoffatomen. Das MBI ist weltweit führend bei der Entwicklung solcher Lichtquellen, die es den Forschern ermöglichen werden, die elementaren Bestandteile des Lebens zu untersuchen.

Fakten, Hintergründe, Dossiers
  • Absorptionsspektroskopie
  • Laser
  • Moleküle
Mehr über MBI
  • News

    Moleküle aus mehreren Blickwinkeln

    Die Röntgenspektroskopie bietet einen direkten Einblick in die Natur chemischer Bindungen und den Verlauf chemischer Reaktionen. Momentan werden von wichtigen Forschungslaboren intensive Anstrengungen bei der Weiterentwicklung der Röntgenquellen und der Implementierung neuer Messmethoden un ... mehr

    Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala

    Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und O ... mehr

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

  • Forschungsinstitute

    Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V

    Das Max-Born-Instiitut (MBI) betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei der Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Es entwickelt und nutzt hierzu ultrakurze und ultraintensive Laser und ... mehr

Mehr über Forschungsverbund Berlin
  • News

    Moleküle aus mehreren Blickwinkeln

    Die Röntgenspektroskopie bietet einen direkten Einblick in die Natur chemischer Bindungen und den Verlauf chemischer Reaktionen. Momentan werden von wichtigen Forschungslaboren intensive Anstrengungen bei der Weiterentwicklung der Röntgenquellen und der Implementierung neuer Messmethoden un ... mehr

    Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala

    Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und O ... mehr

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

  • Verbände

    Forschungsverbund Berlin e.V.

    Der Forschungsverbund Berlin e.V. (FVB) ist Träger von insgesamt acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die unter Wahrung ihrer wissenschaftlichen Eigenständigkeit im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.