Meine Merkliste
my.chemie.de  
Login  

Nylon als Baustein für transparente elektronische Geräte?

21.08.2019

© MPI-P

Transparentes Nylon könnte in Zukunft einen wichtigen Baustein für die Entwicklung transparenter elektronischer Schaltungen darstellen.

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben unter der Leitung von Dr. Kamal Asadi eine vier Jahrzehnte alte Herausforderung gelöst. Sie haben dünne Nylonschichten hergestellt, die beispielsweise in elektronischen Speicherkomponenten eingesetzt werden können. Die dünnen Nylonschichten sind mehrere 100-mal dünner als ein menschliches Haar und könnten daher für Anwendungen in biegsamen elektronischen Geräten oder für Elektronik in Kleidungsstücken attraktiv sein.

Da sich die Elektronik-Industrie heutzutage immer mehr in Richtung tragbarer Geräte sowie elektronischer (E-)Textilien verlagert, könnten in Zukunft elektronische Materialien wie Ferroelektrika in unsere Kleidung integriert werden. Nylon, eine Familie synthetischer Polymere, wurde erstmals in den 1920er Jahren für Damenstrümpfe eingeführt und gehört heute zu den am häufigsten verwendeten synthetischen Fasern in Textilien. Es besteht aus einer langen Kette von sich wiederholenden molekularen Einheiten, d. h. Polymeren, wobei jede sich wiederholende Einheit eine bestimmte Anordnung von Wasserstoff, Sauerstoff und Stickstoff sowie Kohlenstoffatomen enthält.

Neben der Verwendung in Textilien wurde gezeigt, dass einige Nylons auch sogenannte "ferroelektrische Eigenschaften" aufweisen. Dies bedeutet, dass positive und negative elektrische Ladungen getrennt werden können und dieser Zustand aufrechterhalten werden kann. Ferroelektrische Materialien werden beispielsweise in Sensoren, Aktuatoren, Speichern und Geräten zur Energiegewinnung eingesetzt. Der Vorteil beim Einsatz solcher Polymere besteht darin, dass sie mit geeigneten Lösungsmitteln verflüssigt und somit in gelöstem Zustand kostengünstig zu flexiblen Dünnschichten verarbeitet werden können, die sich für elektronische Komponenten wie Kondensatoren, Transistoren und Dioden eignen. Dies macht ferroelektrische Polymere zu einer geeigneten Wahl für die Integration in Textilien. Obwohl Nylonpolymere im Laufe der Jahre bedeutende kommerzielle Anwendungen in Geweben und Fasern gefunden haben, wurde sie bisher in elektronischen Geräten nur selten eingesetzt, da es unmöglich war, hochwertige dünne Schichten aus ferroelektrischem Nylon durch Lösungsverarbeitung herzustellen.

Wissenschaftler des MPI-P haben nun in Zusammenarbeit mit Forschern der Johannes Gutenberg-Universität Mainz und der Universität Lodz dieses vierzig Jahre alte Problem gelöst und ein Verfahren zur Herstellung ferroelektrischer Nylon-Dünnschichtkondensatoren entwickelt, indem sie Nylon in einer Mischung aus Trifluoressigsäure und Aceton aufgelöst und im Vakuum wieder verfestigt haben. Sie konnten dünne Nylonschichten herstellen, die typischerweise nur wenige 100 Nanometer dick sind, also mehrere 100 mal dünner als ein menschliches Haar. "Mit dieser Methode haben wir extrem glatte Dünnschichten hergestellt. Dies ist sehr wichtig, da es den elektrischen Durchbruch von beispielsweise Kondensatoren und somit die Zerstörung elektronischer Schaltungen verhindert. Gleichzeitig sind die dünnen Filme aufgrund der Glätte transparent, was transparente elektronische Geräte ermöglicht", sagt Dr. Kamal Asadi, Gruppenleiter am MPI-P.

Mit ihrem neu entwickelten Verfahren konnte die Gruppe um Kamal Asadi Hochleistungs-Nylonkondensatoren herstellen. Die Wissenschaftler unterzogen die Prototypen ausgedehnten Spannungszyklen und bewiesen die Stabilität des ferroelektrischen Nylons bei Millionen von Auf- und Entladevorgängen. Die dünnen Nylonschichten könnten in Zukunft zu einem wichtigen Bestandteil für den Einsatz in der flexiblen Elektronik werden und Anwendung in biegsamen elektronischen Geräten oder für Elektronik in Kleidungsstücken finden. Diese neuen Erkenntnisse ebnen den Weg zu multifunktionalem Gewebe, das sowohl als Stoff für Kleidung dient als auch gleichzeitig aus unserer Körperbewegung Strom erzeugen kann.

Fakten, Hintergründe, Dossiers
  • flexible Elektronik
Mehr über MPI für Polymerforschung
  • News

    Wie man effiziente Materialien für OLED-Displays entwickelt

    Für Anwendungen wie Leuchtdioden oder Solarzellen stehen heute organische Materialien im Mittelpunkt der Forschung. Diese organischen Moleküle könnten eine vielversprechende Alternative zu den bisher verwendeten Halbleitern wie Silizium oder Germanium sein und werden in OLED-Displays einges ... mehr

    Auf dem Weg zu druckbaren organischen Leuchtdioden

    Organische Leuchtdioden (OLEDs) sind heute in vielen elektronischen Geräten, angefangen von Smartphones bis hin zu Fernsehgeräten, in Form von Displays verbaut. Wissenschaftlern des Max-Planck-Instituts für Polymerforschung (MPI-P) ist es nun gelungen, ein neues Design dieser Leuchtdioden z ... mehr

    Auf Wiedersehen, Silizium?

    Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweis ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Polymerforschung

    Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Es wurde 1983 auf dem Campus der Johannes Gutenberg-Universität gegründet und nahm im Juni 1984 seine wissenschaftliche Arbeit auf. mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Präzise Schadstoffermittlung aus dem All

    Stickoxide (NO und NO2) tragen wesentlich zur Luftverschmutzung bei. Um die Luftqualität möglichst gut vorherzusagen und Strategien zur Reduktion der Verschmutzung zu entwickeln, sind präzise Emissionsdaten notwendig. Dazu helfen unter anderem tägliche Satellitenmessungen. Das Messgerät bli ... mehr

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

    Laser erzeugt topologischen Zustand in Graphen

    Die Entdeckung neuer Methoden zur Kontrolle topologischer Aspekte von Quantenmaterialien ist ein wichtiges Forschungsfeld, da mit ihnen Materialien mit wünschenswerten Ladungs- und Spintransporteigenschaften für zukünftige Technologien entwickelt werden können. Nun haben Wissenschaftler vom ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.