20.04.2022 - Max-Planck-Institut für Polymerforschung

Elektrisierte Wassertropfen

Elektrostatik beeinflusst die Bewegung von Tropfen auf Oberflächen

Etwas so einfaches wie die Bewegung von Wassertropfen auf Oberflächen sollte eigentlich verstanden sein – würde man mutmaßen. De facto gibt es aber bisher noch zahlreiche offene Fragen zu den Kräften, die auf einen gleitenden Tropfen wirken. Ein Forscherteam des Max-Planck-Instituts für Polymerforschung in Zusammenarbeit mit Kollegen der TU Darmstadt fand nun heraus: Neben der Oberflächenenergie und der viskosen Reibung innerhalb des Tropfens spielt auch die Elektrostatik eine bedeutende Rolle. Die Ergebnisse wurden nun im Magazin Nature Physics veröffentlicht.

Der Regen prasselt auf die Autoscheibe, der Fahrtwind drückt die Tropfen zur Seite. Doch wie genau sich die Tropfen auf der Scheibe bewegen konnte bislang niemand präzise vorhersagen. Dabei ist ein solches Verständnis in zahlreichen Bereichen wichtig, etwa für das autonomen Fahren: So sollen beispielsweise in die Windschutzscheibe eingebaute Kameras die Straße und die Verkehrssituation im Blick behalten – die Oberfläche der Scheibe muss dafür so gestaltet sein, dass die Tropfen vollständig vom Fahrtwind heruntergeblasen werden und die Sicht auch bei Regen frei bleibt. Andere Beispiele mit umgekehrtem Vorzeichen sind Anwendungen, bei denen Tropfen auf Oberflächen haften bleiben müssen, z.B. beim Aufbringen von Sprühfarbe oder bei Pflanzenschutzmitteln.

„Bis jetzt ging man davon aus, dass die Oberflächenbeschichtung dafür verantwortlich ist, wie sich der Tropfen auf einer Fläche bewegt – also die ersten paar Moleküllagen“, sagt Prof. Hans-Jürgen Butt, der als Direktor den Arbeitskreis „Physik der Grenzflächen“ am Max-Planck-Institut für Polymerforschung leitet. So hängt es beispielsweise von der Oberfläche ab, ob sich eine kugelige oder eine flache Tropfenform ausbildet. Mag der Tropfen die Oberfläche, presst er sich platt auf sie, um möglichst viel Kontakt zu haben. Behagt ihm die Oberfläche nicht, wie z. B. beim bekannten Lotuseffekt, kugelt er sich zusammen. Auch war klar: Bewegt sich ein Tropfen, tritt viskose Reibung – also Reibung zwischen den einzelnen Wassermolekülen - innerhalb des Tropfens auf, die dessen Fortbewegung ebenfalls beeinflusst.

Elektrostatik verursacht Unterschiede in der Geschwindigkeit

Doch, so stellte ein Forscherteam am MPI für Polymerforschung fest: Weder die Kapillarkraft noch die viskoelastische Kraft können die Unterschiede in der Geschwindigkeit erklären, mit der sich Tropfen über verschiedene Oberflächen bewegen. Fragen warf insbesondere die Tatsache auf, dass die Tropfen auf unterschiedlichen Substraten unterschiedlich schnell laufen – auch dann, wenn diese mit der gleichen Beschichtung überzogen wurden und es somit eigentlich keinen Unterschied geben sollte.

Die Forscher führten daher zunächst eine mysteriöse „Extrakraft“ ein. Um ihr auf die Spur zu kommen, veranstaltete Xiaomei Li, Doktorandin im Arbeitskreis von Hans-Jürgen Butt, eine Art Tropfenrennen. „Ich habe die Tropfen auf verschiedenen Substraten gefilmt, aus ihrer Bewegung Geschwindigkeitsprofile und Beschleunigungsprofile erstellt, die bereits bekannten Kräfte herausgerechnet und daraus wiederum die Kraft kalkuliert, die wir bislang noch nicht im Blick hatten“, erklärt sie.

Das erstaunliche Ergebnis: Die berechnete Kraft stimmt mit einer elektrostatischen Kraft überein, die die Forscher in einem Modell vor einigen Jahren erstmals beschrieben haben. „Indem wir die experimentellen Ergebnisse mit diesem numerischen Modell vergleichen, können wir zuvor verwirrende Tropfenbahnen erklären“, sagt Jun.-Prof. Stefan Weber, der als Gruppenleiter in Butts Arbeitskreis arbeitet.

Rutschen zuvor neutrale Tröpfchen über einen Isolator, können sie sich elektrisch aufladen: Die Elektrostatik spielt dort also eine bedeutende Rolle. Auf einem elektrisch leitenden Substrat dagegen gibt der Tropfen seine Ladung umgehend wieder an das Substrat ab. „Die elektrostatische Kraft, die zuvor niemand im Blick hatte, hat also einen großen Einfluss: Sie muss für Wasser, wässrige Elektrolyte und Ethylenglykol auf allen getesteten hydrophoben Oberflächen berücksichtigt werden“, fasst Weber zusammen. Die Ergebnisse veröffentlichte das Forscherteam nun im Magazin Nature Physics. Sie werden die Kontrolle der Tropfenbewegung in vielen Anwendungen verbessern angefangen vom Drucken über die Mikrofluidik oder das Wassermanagement bis hin zur Stromerzeugung über Tröpfchen-basierten Minigeneratoren.

Fakten, Hintergründe, Dossiers
Mehr über MPI für Polymerforschung
  • News

    Es geht um die Wurst

    Der richtige Knack der Wurst ist nicht zuletzt eine Sache der Physik. Ein Team des Max-Planck-Instituts für Polymerforschung in Mainz hat untersucht, wie die Eigenschaften von pflanzlichen Proteinen das Mundgefühl vegetarischer und veganer Würste beeinflussen. Auf Basis der dabei gewonnenen ... mehr

    Goldene Hochzeit für Moleküle

    Chemische Synthesen in Flüssigkeiten und Gasen finden im dreidimensionalen Raum statt. Aus zufälligen Kollisionen muss in extrem kurzer Zeit etwas Neues entstehen. Doch es geht auch anders: Auf einer Goldoberfläche im Ultrahochvakuum können still nebeneinanderliegende Moleküle dazu gebracht ... mehr

    Eisfrei in eisigen Welten: Spezielle Schale schützt Muschel vor Vereisung

    Ein Wissenschaftlerteam um Konrad Meister, Professor an der University of Alaska Southeast und Gruppenleiter am Max-Planck-Institut für Polymerforschung, hat nun eine antarktische Muschelart untersucht, die sich dem Vereisungsprozess mit Hilfe ihrer Schalenoberfläche entgegenstellt. Durch i ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Polymerforschung

    Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Es wurde 1983 auf dem Campus der Johannes Gutenberg-Universität gegründet und nahm im Juni 1984 seine wissenschaftliche Arbeit auf. mehr

Mehr über TU Darmstadt
  • News

    Vom Stroh zum flüssigen Kraftstoff

    Forschende der TU Darmstadt haben einen wichtigen Erfolg zur Produktion von nachhaltigen Biotreibstoffen für den Transportsektor erzielt. Mit einer neuen Vergasertechnologie gelang es ihnen weltweit erstmalig, ohne zusätzliche externe Energie biogene Reststoffe wie Weizenstroh zu stofflich ... mehr

    Tiefer Einblick dank Neutronen aus der Laserquelle

    Ein Team unter Leitung der TU Darmstadt hat erstmals mit Lasern erzeugte Neutronen für eine industrielle Anwendung nutzbar gemacht. Die Forschenden zeigten, dass Neutronen, die kompakt mit Lasern erzeugt werden, in der zerstörungsfreien Materialprüfung zum Einsatz kommen können. Als elektri ... mehr

    Warum manche Blasen mehr Tempo machen

    Eine offene Frage mit großer Relevanz für industrielle Produktionsprozesse. Forschende der TU Graz und der TU Darmstadt haben nun eine Erklärung gefunden. Es ist ein unter Fachleuten lange bekanntes Rätsel, das in vielen industriellen Produktionsprozessen sehr relevant ist: die sprunghaft u ... mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr