15.03.2016 - Universität Wien

Der "große, rauchende Drache" der Quantenphysik

Physiker um Anton Zeilinger haben erstmals die fast 100jährige Geschichte quantenphysikalischer "Delayed-choice"-Experimente aufgeschrieben und ausgewertet – von den theoretischen Anfängen bei Albert Einstein bis zu den neuesten Forschungsarbeiten der Gegenwart.

Seit dem 17. Jahrhundert beschäftigte die Wissenschaft die Frage, was Licht ist. Issac Newton war überzeugt, dass es ein Strom von Teilchen ist. Sein Zeitgenosse Christiaan Huygens hingegen argumentierte, dass es sich um Wellen handelt. Die moderne Quantenphysik sagt, dass beide richtig lagen. Licht kann sowohl als Teilchen als auch als Welle beobachtet werden – je nachdem, welche Eigenschaft in einem Experiment gemessen wird, zeigt es sich mehr als das eine oder das andere. Dieser sogenannte Welle-Teilchen-Dualismus ist eines der grundlegenden Prinzipien der Quantenphysik. Doch diese Annahme fordert das Alltagsverständnis heraus: Kann ein und dasselbe tatsächlich zwei verschiedene Dinge zugleich sein?

Das Unbestimmte messen

Die fundamentale Unbestimmtheit quantenphysikalischer Phänomene verglich der amerikanische Physiker John Archibald Wheeler (1911–2008) bereits in den 1970er Jahren metaphorisch mit einem "großen, rauchenden Drachen": Man sieht den Schwanz, also die Quelle der Teilchen, und das Maul, sprich die Messergebnisse. Aber dazwischen befindet sich ein von Qualm umnebelter Körper. Und dieser Nebel lässt sich nicht lichten: Denn erst die Messung bestimmt das Phänomen, nicht umgekehrt. Um das zu beweisen, führte Wheeler ein berühmt gewordenes Gedankenexperiment durch. Beim "Delayed-choice"-Experiment wird die Wahl, ob die Teilchen- oder die Welleneigenschaft bestimmt wird, verzögert bzw. sogar während des Experiments verändert. Dadurch zeigt sich ein und dasselbe Phänomen, wie beispielsweise Licht, in ein und demselben Experiment einmal als Teilchen und einmal als Welle. Es kann also tatsächlich beides sein, abhängig von Zeitpunkt und Art der Messung.

Zahlreiche Quantenphysiker haben in den vergangenen Jahrzehnten versucht, Wheelers Gedanken experimentell zu überprüfen, um damit den Welle-Teilchen-Dualismus auch empirisch zu untermauern. Wie erfolgreich dieses Unterfangen war, haben nun Xiao-song Ma von der Nanjing University, Johannes Kofler vom Max-Planck-Institut für Quantenoptik und Anton Zeilinger, Quantenphysiker an der Universität Wien und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften erstmals in einer umfassenden Studie gezeigt, welche die gesamte Geschichte der "Delayed-choice"-Experimente zusammenfasst und evaluiert.

Obwohl sich der Gedanke des Welle-Teilchen-Dualismus bis zu Albert Einsteins Erklärung des photoelektrischen Effekts durch Lichtteilchen im Jahr 1905 zurückverfolgen lässt, dauerte es bis in die 1980er Jahre bis erste "Delayed-choice"-Experimente durchgeführt werden konnten. "Erst durch die Entwicklung neuer quantenoptischer Techniken für die schnelle und präzise Messung von Licht, war es möglich, Wheelers Gedankenexperiment in die Tat umzusetzen", sagt Xiao-song Ma, der Erstautor der Studie.

Bedeutsam für Quantenkryptographie und Quantencomputer

"Experimente dieser Art konfrontieren uns mit Grundsatzfragen der Quantenphysik", ergänzt Anton Zeilinger. "Doch auch für zukünftige innovative Anwendungen haben sie große Bedeutung, etwa in der Quantenkryptographie oder in der Weiterentwicklung des Quantencomputers." So lassen sich "Delayed-choice"-Experimente auch auf das quantenphysikalische Phänomen der Verschränkung anwenden, was für die Sicherheit von Quantenkommunikation eine wichtige Rolle spielt. Bei Quantencomputern kann sich in bestimmten Fällen durch die Anwendung von "Delayed-choice"-Experimenten die Rechengeschwindigkeit erhöhen lassen. Die Autoren der Studie, die nun in der Fachzeitschrift "Reviews of Modern Physics" veröffentlicht wurde, erwarten sich daher auch in Zukunft durch "Delayed-choice"-Experimente weitere neue Erkenntnisse in der Quantenphysik und praktische Anwendungen für darauf basierende Technologien.

Fakten, Hintergründe, Dossiers
  • Quantenphysik
  • Universität Wien
  • Nanjing University
  • MPI für Quantenoptik
  • Österreichische Aka…
  • Quantenkommunikation
  • Quantencomputer
Mehr über Universität Wien
  • News

    Mineral heilt sich selbst von Schäden durch radioaktive Strahlung

    Manche Minerale setzen sich selbst radioaktiver Strahlung aus und verändern so über lange Zeit ihre Struktur. Monazit verhält sich in diesem Fall "wie Camembert, in den man Löcher bohrt": Sind schon Strahlenschäden vorhanden, "heilt" das Mineral wieder von selbst. In einer neuen Studie konn ... mehr

    Jahrzehntelanger Streit in der Chemie beendet: Wenn lange Verkanntes nützlich wird

    Der Nachweis der sogenannten nicht-klassischen Carbokationen beendete einen jahrzehntelangen Streit in der Chemie über die Existenz dieser ungewöhnlichen chemischen Verbindungen. Durch ihre Kurzlebigkeit war die Erforschung dieser außergewöhnlichen Kohlenstoffmoleküle mit positiv geladenem ... mehr

    Die Natur enthüllt sich der Wissenschaft

    Die gesellschaftlichen Herausforderungen des 21. Jahrhunderts wie etwa die demographische Entwicklung und eine immer älter werdende Bevölkerung steigern die Nachfrage nach neuen funktionellen Werkstoffen, z.B. Knochenprothesen. Beim Design der Materialien dient die Natur oft als Vorbild. In ... mehr

  • Videos

    Wenn Chemiker mit Molekülen spielen

    Nuno Maulide und Leticia González von der Uni Wien haben eine neue Reaktion entwickelt, um sogenannte Heterozyklen billiger und umweltfreundlicher herzustellen. mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr

Mehr über Nanjing University
  • News

    4D-Bildgebung mit Flüssigkristall-Mikrolinsen

    Die meisten Bilder, die mit einem Kameraobjektiv aufgenommen werden, sind flach und zweidimensional. Zunehmend bieten 3D-Bildgebungstechnologien den entscheidenden Kontext der Tiefe für wissenschaftliche und medizinische Anwendungen. Die 4D-Bildgebung, die Informationen über die Lichtpolari ... mehr

    Leistung von mikrobiellen Brennstoffzellen erheblich steigern

    Manche Mikroorganismen können unter anaeroben Bedingungen Strom erzeugen. Auf diese Fähigkeit greift man bei der mikrobiellen Brennstoffzelle zurück, die besonders für Klärwerke interessant ist. Ein Schwachpunkt ist dabei die nach wie vor unbefriedigende Energiedichte. Wissenschaftler aus S ... mehr

    Alles in einem gegen CO2

    Lichtfänger, photothermischer Wandler, Wasserstoff-Produzent und Katalysator in einem, das bietet ein „selbstaufheizender“ Bor-Katalysator, der Sonnenlicht besonders gut ausnutzt, um Kohlendioxid (CO2) effizient zu reduzieren. In der Zeitschrift Angewandte Chemie stellen Forscher diese phot ... mehr

Mehr über Österreichische Akademie der Wissenschaften
Mehr über MPI für Quantenoptik
  • News

    Neuartiges Lichtmikroskop mit einer Auflösung von einigen zehn Pikometern

    Lichtmikroskope ermöglichen es uns, winzige Objekte wie lebende Zellen sehen zu können. Bislang ist es nicht möglich, die viel kleineren Elektronen zwischen den Atomen in Festkörpern zu beobachten. Wissenschaftler aus den Arbeitsgruppen von Professor Eleftherios Goulielmakis vom Institut fü ... mehr

    Ultraschneller Blick in die Photochemie der Atmosphäre

    Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf den Einfluss von Strahlung. Einen dieser Prozesse hat das Team um Professor Matthias Kling und Dr. Boris Bergues vom Labor für Attos ... mehr

    Molekülarchitekturen aus Atomen modelliert

    Neue Wirkstoffe suchen, neue Verfahren in der chemischen Industrie entwickeln: Computersimulation von Molekülen oder Reaktionen sollen derlei beschleunigen. Doch selbst Supercomputer stoßen dabei schnell an Grenzen. Einen alternativen, analogen Weg zeigen nun Forscher des Max-Planck-Institu ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Quantenoptik

    Die Wechselwirkung von Licht und Materie unter extrem kontrollierten Bedingungen ist das gemeinsame Kennzeichen der fünf wissenschaftlichen Abteilungen am Max-Planck-Institut für Quantenoptik. Die Abt. Laserspektroskopie befasst sich mit der hochpräzisen Vermessung der Spektrallinien von Wa ... mehr