Meine Merkliste
my.chemie.de  
Login  

Der "große, rauchende Drache" der Quantenphysik

15.03.2016

Copyright: Xiao-song Ma

Die fundamentale Unbestimmtheit quantenphysikalischer Phänomene verglich der amerikanische Physiker John Archibald Wheeler bereits in den 1970er Jahren metaphorisch mit einem "großen, rauchenden Drachen": Man sieht den Schwanz, also die Quelle der Teilchen, und das Maul, sprich die Messergebnisse. Aber dazwischen befindet sich ein von Qualm umnebelter Körper

Physiker um Anton Zeilinger haben erstmals die fast 100jährige Geschichte quantenphysikalischer "Delayed-choice"-Experimente aufgeschrieben und ausgewertet – von den theoretischen Anfängen bei Albert Einstein bis zu den neuesten Forschungsarbeiten der Gegenwart.

Seit dem 17. Jahrhundert beschäftigte die Wissenschaft die Frage, was Licht ist. Issac Newton war überzeugt, dass es ein Strom von Teilchen ist. Sein Zeitgenosse Christiaan Huygens hingegen argumentierte, dass es sich um Wellen handelt. Die moderne Quantenphysik sagt, dass beide richtig lagen. Licht kann sowohl als Teilchen als auch als Welle beobachtet werden – je nachdem, welche Eigenschaft in einem Experiment gemessen wird, zeigt es sich mehr als das eine oder das andere. Dieser sogenannte Welle-Teilchen-Dualismus ist eines der grundlegenden Prinzipien der Quantenphysik. Doch diese Annahme fordert das Alltagsverständnis heraus: Kann ein und dasselbe tatsächlich zwei verschiedene Dinge zugleich sein?

Das Unbestimmte messen

Die fundamentale Unbestimmtheit quantenphysikalischer Phänomene verglich der amerikanische Physiker John Archibald Wheeler (1911–2008) bereits in den 1970er Jahren metaphorisch mit einem "großen, rauchenden Drachen": Man sieht den Schwanz, also die Quelle der Teilchen, und das Maul, sprich die Messergebnisse. Aber dazwischen befindet sich ein von Qualm umnebelter Körper. Und dieser Nebel lässt sich nicht lichten: Denn erst die Messung bestimmt das Phänomen, nicht umgekehrt. Um das zu beweisen, führte Wheeler ein berühmt gewordenes Gedankenexperiment durch. Beim "Delayed-choice"-Experiment wird die Wahl, ob die Teilchen- oder die Welleneigenschaft bestimmt wird, verzögert bzw. sogar während des Experiments verändert. Dadurch zeigt sich ein und dasselbe Phänomen, wie beispielsweise Licht, in ein und demselben Experiment einmal als Teilchen und einmal als Welle. Es kann also tatsächlich beides sein, abhängig von Zeitpunkt und Art der Messung.

Zahlreiche Quantenphysiker haben in den vergangenen Jahrzehnten versucht, Wheelers Gedanken experimentell zu überprüfen, um damit den Welle-Teilchen-Dualismus auch empirisch zu untermauern. Wie erfolgreich dieses Unterfangen war, haben nun Xiao-song Ma von der Nanjing University, Johannes Kofler vom Max-Planck-Institut für Quantenoptik und Anton Zeilinger, Quantenphysiker an der Universität Wien und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften erstmals in einer umfassenden Studie gezeigt, welche die gesamte Geschichte der "Delayed-choice"-Experimente zusammenfasst und evaluiert.

Obwohl sich der Gedanke des Welle-Teilchen-Dualismus bis zu Albert Einsteins Erklärung des photoelektrischen Effekts durch Lichtteilchen im Jahr 1905 zurückverfolgen lässt, dauerte es bis in die 1980er Jahre bis erste "Delayed-choice"-Experimente durchgeführt werden konnten. "Erst durch die Entwicklung neuer quantenoptischer Techniken für die schnelle und präzise Messung von Licht, war es möglich, Wheelers Gedankenexperiment in die Tat umzusetzen", sagt Xiao-song Ma, der Erstautor der Studie.

Bedeutsam für Quantenkryptographie und Quantencomputer

"Experimente dieser Art konfrontieren uns mit Grundsatzfragen der Quantenphysik", ergänzt Anton Zeilinger. "Doch auch für zukünftige innovative Anwendungen haben sie große Bedeutung, etwa in der Quantenkryptographie oder in der Weiterentwicklung des Quantencomputers." So lassen sich "Delayed-choice"-Experimente auch auf das quantenphysikalische Phänomen der Verschränkung anwenden, was für die Sicherheit von Quantenkommunikation eine wichtige Rolle spielt. Bei Quantencomputern kann sich in bestimmten Fällen durch die Anwendung von "Delayed-choice"-Experimenten die Rechengeschwindigkeit erhöhen lassen. Die Autoren der Studie, die nun in der Fachzeitschrift "Reviews of Modern Physics" veröffentlicht wurde, erwarten sich daher auch in Zukunft durch "Delayed-choice"-Experimente weitere neue Erkenntnisse in der Quantenphysik und praktische Anwendungen für darauf basierende Technologien.

Fakten, Hintergründe, Dossiers
  • Quantenphysik
  • Universität Wien
  • Nanjing University
  • MPI für Quantenoptik
  • Österreichische Aka…
  • Quantenkommunikation
  • Quantencomputer
Mehr über Universität Wien
  • News

    Wie man Nanoteilchen nach ihrer 'Form' trennen kann

    In unserem täglichen Leben sind Zweck und Funktion eines Gegenstandes entweder durch dessen Material bestimmt oder durch dessen Form. Ein Regenmantel ist aus wasserabweisenden Stoffen hergestellt, ein Rad immer rund, damit es rollen kann. Aber wie sieht das bei den kleinsten Teilchen aus? W ... mehr

    Wenn Elektronen mittanzen dürfen

    Ionische Flüssigkeiten haben besondere Eigenschaften, die sie für viele Anwendungen interessant machen. Je nach Kombination von Anionen und Kationen können die flüssigen Salze z.B. sehr wasser(un)löslich, leitfähig oder temperaturstabil sein. Polarisierbare molekulardynamische Simulationen ... mehr

    Neue Aussicht für atomare Präzisionsdotierung

    Die größtmögliche Kontrolle über technische und elektronische Komponenten wäre, Bauteile Atom für Atom präzise herzustellen. Nun machte eine internationale Kollaboration unter der Leitung von Toma Susi der Universität Wien und Ju Li des MIT einen weiteren Schritt in diese Richtung. Das Team ... mehr

  • Videos

    Wenn Chemiker mit Molekülen spielen

    Nuno Maulide und Leticia González von der Uni Wien haben eine neue Reaktion entwickelt, um sogenannte Heterozyklen billiger und umweltfreundlicher herzustellen. mehr

  • Veranstaltungen
    Konferenz
    18.08. – 22.08.
    2019
    Wien, AT

    32nd European Crystallographic Meeting

    The 32nd European Crystallographic Meeting (ECM32) will be held in the High-Renaissance main building of the University of Vienna. ECM32 is setting up an attractive programme covering the latest advances in crystallography and related sciences to attract young and senior scientists as well ... mehr

  • Universitäten

    Department für Ernährungswissenschaften

    Das Department für Ernährungswissenschaften ist das einzige dieser Art an einer östereichischen Universität. Es beschäftigt sich daher als einzige universitäre Einrichtung mit allen Fragen rund um die Ernährung des Menschen in Forschung und Lehre. mehr

    Universität Wien

    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsst ... mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr

Mehr über Nanjing University
Mehr über Österreichische Akademie der Wissenschaften
Mehr über MPI für Quantenoptik
  • News

    Direkte Abbildung von Riesenmolekülen

    Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich. Physikern unter Leitung von Prof. Immanuel Bloch, Direktor der Abteilung Quantenvielteilchensysteme am MPQ,  ist es nun jedoch gelungen, ... mehr

    Elektronenspektrometer entschlüsselt quantenmechanische Effekte

    Elektronische Schaltkreise sind derart miniaturisiert, dass sich quantenmechanische Effekte bemerkbar machen. Mithilfe von Photoelektronenspektrometern können Festkörperphysiker und Materialentwickler mehr über solche elektronenbasierte Prozesse herausfinden. Fraunhofer-Forschende haben daz ... mehr

    Moleküle brillant beleuchtet

    Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt ist. Mit brillantem Infrarotlicht wollen Wissenschaftler des Labors für Attosekundenphysik (LAP), der Ludwig-Maximilians-Universität ( ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Quantenoptik

    Die Wechselwirkung von Licht und Materie unter extrem kontrollierten Bedingungen ist das gemeinsame Kennzeichen der fünf wissenschaftlichen Abteilungen am Max-Planck-Institut für Quantenoptik. Die Abt. Laserspektroskopie befasst sich mit der hochpräzisen Vermessung der Spektrallinien von Wa ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.