Meine Merkliste
my.chemie.de  
Login  

Aluminiumoxid



Strukturformel
Allgemeines
Name Aluminiumoxid
Andere Namen
Summenformel Al2O3
CAS-Nummer 1344-28-1;[1]
Kurzbeschreibung weißes, geruchloses Pulver
Eigenschaften
Molare Masse 101,96 g·mol−1[1]
Aggregatzustand fest
Dichte 3,94 g·cm−3[1]
Schmelzpunkt 2050 °C[1]
Siedepunkt 2980 ± 60 °C[1]
Löslichkeit

unlöslich in Wasser, schwer löslich in Säuren und Basen[1]

Sicherheitshinweise
Gefahrstoffkennzeichnung
keine Gefahrensymbole
[1]
R- und S-Sätze R: keine R-Sätze[1]
S: 22[1]
MAK

6 mg/m3 als Feinstaub

LD50

> 5000 mg·kg−1 (Ratte, oral) [1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Aluminiumoxid (engl. alumina) ist die Sauerstoffverbindung des chemischen Elements Aluminium.

Inhaltsverzeichnis

Modifikationen

Die wichtigsten Modifikationen des Aluminiumoxides sind:

  • das kubische γ-Al2O3 (Tonerde, Ausgangsstoff zur Keramik- und Aluminiumherstellung)
  • das rhomboedrische (trigonale) α-Al2O3 (bekannt als Mineral Korund, Saphir oder – bei Chromdotierung – Rubin, als Schleifmittel und Aluminiumoxid-Keramik)

Gewinnung und Darstellung

Aus Bauxit wird Aluminiumhydroxid (ATH) durch Aufschließen in Natronlauge gewonnen (Bayer-Verfahren). Durch Entziehen des Wassers, z. B. durch Brennen, Sintern oder Kalzinieren erhält man Aluminiumoxid.

Die Darstellung von Aluminiumoxid kann auch durch vorsichtiges Dehydrieren von Gibbsit (Hydrargillit) oder Böhmit erfolgen.

Aluminiumoxid kann auch durch elektrolytische Oxidation auf Aluminiumoberflächen erzeugt werden, siehe Eloxieren und Elektrolytkondensator.

Das reine Metall Aluminium weist nach Lagerung an Luft eine dünne spontane Aluminiumoxidschicht (Selbstpassivierung) auf, die es vor Korrosion schützt.

Aluminiumoxid entsteht auch bei der Verbrennung von Aluminiumpulver mit Ammoniumperchlorat in Feststoffraketen.

Eigenschaften

Das γ-Al2O3 ist ein hygroskopisches, weißes, lockeres Pulver, das nicht in Wasser, dafür in starken Säuren und Basen löslich ist.

Bereits ab 800 °C geht das γ-Al2O3 in das in Säuren wie Basen im allgemeinen unlösliche α-Al2O3 über.

Mit verschiedenen Metalloxiden bildet Aluminiumoxid Aluminate.

γ-Al2O3 ist ein poröses Material, dessen Oberflächenstruktur stark von den Herstellungprozess, beziehungsweise dessen Temperatur, beeinflusst werden kann. In der Chromatographie wird es als Adsorbens verwendet.

Verwendung

Das α-Al2O3 hat eine Mohs'sche Härte von 9 bis 9,5 und wird unter anderem zu Lagersteinen von Messinstrumenten und Uhren, sowie zu Schleifmitteln verarbeitet. Basis dafür ist häufig das als Nebenprodukt der Aluminothermie anfallende Alundum.

Kalzinierte Aluminiumoxide werden in der Keramik (z. B. in Zündkerzen, Waschbecken, Hotelgeschirr, schusssicherer Bekleidung) oder im weitesten Sinn als Poliermittel (z.B. in Glaskeramikreinigern, Autopflegemitteln, Bremsbelägen, Zahnpasten) verwendet. Weiterhin dient gesintertes α-Al2O3 (Sinterkorund) als feuerfestes Material in Ofenauskleidungen oder Laborgeräten.

Mit Verunreinigungen durch geringe Mengen an Cr2O3 beziehungsweise TiO2 bildet der Korund die Edelsteine Rubin und Saphir.

Mit Ti2O3 dotierte Al2O3-Einkristalle bilden das Herzstück des Titan:Saphir-Lasers.

γ-Al2O3 dient als Adsorbens und als Katalysatorträger, sowie als Katalysator selbst.

In der Elektrotechnik wird Aluminiumoxid wegen seiner hohen relativen Dielektrizitätskonstante als Dielektrikum eingesetzt. Haupteinsatzbereich ist dabei die Realisierung von Streifenleitungen und Kondensatoren in der Hochfrequenztechnik.

Neueste Sinterverfahren machen es möglich, Aluminiumoxid zur Herstellung extrem fester und bruchsicherer Gläser einzusetzen, z. B. bei Armbanduhrengläsern (Nature, Vol. 430, S. 761, 2004).

In letzter Zeit werden Al2O3 Keramiken auch in Panzerungen von Fahrzeugen verwendet. Die Keramik - Kacheln werden dabei auf ein Aramid- bzw. Dyneema-Gewebe geklebt. Diese Art der Panzerung erreicht, bei einem gleichen Flächengewicht die doppelte Schutzwirkung von Panzerstahl. Die Keramik fragmentiert das Geschoss, die Aramid-Fasern fangen anschließend die Bruchstücke auf.

Quellen

  1. a b c d e f g h i j SDL Merck: http://chemdat.merck.de/documents/sds/emd/deu/de/1010/101095.pdf. 20. Feb. 2007

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Aluminiumoxid aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.