Meine Merkliste
my.chemie.de  
Login  

Flammenfärbung



  Die Flammenfärbung, auch Flammprobe genannt, ist eine Methode zur Analyse von chemischen Elementen oder deren Ionen (Nachweisreaktion). Die Methode beruht darauf, dass die Elemente oder Ionen in einer farblosen Flamme Licht spezifischer Wellenlängen abgeben, das für jedes Element charakteristisch ist. Die Flammenfärbung entsteht durch Energieumwandlung von Wärmeenergie zu Strahlungsenergie. Die Umwandlung kommt durch Valenzelektronen zustande, die durch die Wärmeenergie in einen angeregten Zustand gehoben werden und unter der Abgabe von Licht wieder zurückfallen. Stoffe mit denen Flammenfärbung möglich ist, finden aufgrund dieser Eigenschaft in der Pyrotechnik Anwendung.

Bei der Flammenfärbung wird die Stoffprobe meist einfach auf einem Platindraht in die farblose Flamme eines Bunsenbrenners gehalten. Aufgrund der Farbe kann nun auf die Ionen in der Probe rückgeschlossen werden, allerdings überdeckt die sehr intensive gelbe Flammenfärbung des Natrium oft alle anderen Flammenfärbungen. Mit Sicherheit kann nur mit Hilfe eines Spektroskops entschieden werden, welche Elemente in der Probe vorliegen, zumal sich z.B. die Flammenfärbungen von Kalium und Rubidium recht ähnlich sind.

Zu unterscheiden ist die Flammenfärbung von der Lichtabgabe der Edelgase, die auch auf einem angeregten Zustand basiert, welche aber durch Strom, nicht durch eine Flamme herbeigeführt wird.

Inhaltsverzeichnis

Erklärung der Flammenfärbung

Alle Elemente senden bei hohen Temperaturen Licht aus, doch für Elemente, die eine Flammenfärbung aufweisen, geschieht dies schon bei den Temperaturen, die in einer Flamme herrschen.

Die äußersten Elektronen eines Atoms werden durch Zufuhr von Wärmeenergie (die in diesem Fall durch eine Verbrennung entsteht) auf ein vom Atomkern „weiter entferntes“, nicht von Elektronen besetztes Energieniveau, in einen angeregten Zustand, gehoben. Diese Elektronen besitzen nun eine höhere „potentielle“ Energie. Die negativ geladenen Elektronen fallen aber meist in Sekundenbruchteilen wieder auf ein energieärmeres Energieniveau zurück. Die beim Zurückfallen frei werdende Energie wird als Photon (Lichtteilchen) abgegeben. Man spricht von einem „Quant“. Es ist durch eine genau definierte Energie und somit auch mit einer einzigen Wellenlänge gekennzeichnet.

Das Zurückfallen der Elektronen auf energieärmere Energieniveaus kann auch stufenweise erfolgen. Bei jedem Zurückfallen dieses Elektrons auf ein energieärmeres Energieniveau gibt es nun Licht einer ganz bestimmten Farbe ab.

Farbe der Flammenfärbung

Weitere Flammenfärbungen

Die freigegebene Lichtenergie hängt von der Differenz der Energieniveaus (ΔE) ab. Diese Differenz ist für jedes Element unterschiedlich. Die Energie der Photonen bestimmt ihre Wellenlänge (λ) und damit Farbe, so ergibt sich die spezifische Flammenfärbung.

\Delta E=h\cdot \frac{c}{\lambda } = h \cdot f

c = Lichtgeschwindigkeit
h = Plancksches Wirkungsquantum
λ = Wellenlänge

Weist ein Element eine spezifische Flammenfärbung auf, dann weisen auch viele seiner Ionen in Verbindungen diese Flammenfärbung auf (Beispiel: Bariumsulfat weist eine grünliche Flammenfärbung auf, Bariumphosphat nicht). Sehr viele Elemente senden bei hohen Temperaturen sichtbare Spektrallinien aus. Einige Elemente wurden sogar nach der Farbe ihrer bei der Flammenfärung beobachteten Spektrallinien benannt: Caesium (lateinisch: himmelblau) , Rubidium (lateinisch: dunkelrot) und Indium (nicht nach Indien, sondern nach einer indigoblauen Spektrallinie).

Moderne Techniken

Bessere Möglichkeiten als die klassische Flammenfärbung mit Hilfe des Auges bieten spektroskopische Verfahren, die eine Art Weiterentwicklung dieser mit Hilfe von Messinstrumenten darstellen. Das Auge wird hier durch das Spektrometer ersetzt, welches die Lage der Spektrallinien sehr viel besser auflöst, sowie auch die nicht sichtbaren Bereiche des elektromagnetischen Spektrums je nach Spektroskopieart (z.B. IR- oder UV/VIS-Spektroskopie) zur Analyse nutzt. Außerdem ist es weit besser als das Auge in der Lage, die Stärke der Spektrallinien zu bestimmen, wodurch eine Quantitative Analyse möglich wird.

Literatur

  • W. Biltz, W. Fischer, Ausführung qualitativer Analysen anorganischer Stoffe, 16. Auflage, Harri Deutsch, Frankfurt am Main, 1976.
  • G. Jander, E. Blasius, Einführung in das anorganisch chemische Grundpraktikum, 14. Auflage, S. Hirzel Verlag, Stuttgart, 1995, ISBN 3-7776-0672-3
 
Dieser Artikel basiert auf dem Artikel Flammenfärbung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.