Meine Merkliste
my.chemie.de  
Login  

Navigieren im Ozean der Moleküle

Ein Computerprogramm weist den Weg zu neuen Wirkstoffkandidaten

02.07.2009

Neue Wirkstoffe gegen Krebs oder Malaria aufzuspüren, könnte schon bald einfacher werden - dank eines Computerprogramms, mit dem Forscher vom Max-Planck-Institut für molekulare Physiologie in Dortmund die Suche nach geeigneten Substanzen erleichtern: Das Programm namens Scaffold Hunter - scaffold bedeutet im Englischen Grundgerüst und hunter ist der Jäger - dient als Navigationshilfe durch den chemischen Strukturraum. Es erzeugt Karten chemisch verwandter Strukturen und verknüpft sie mit der biologischen Aktivität, das heißt ihrem Potenzial, an Proteine zu binden - vor allem an solche, die medizinisch relevant sind. Mit Hilfe der neuen Methode haben die Max-Planck-Wissenschaftler zusammen mit Kollegen von den Universitäten Frankfurt und Eindhofen sowie der University of New Mexiko Substanzen identifiziert, die als Kandidaten in Frage kommen könnten, um daraus Wirkstoffe für die Krebstherapie und die Behandlung von Malaria zu entwickeln.

Die Dimensionen des chemischen Strukturraums sind unvorstellbar: Mit der Gesamtzahl aller denkbaren chemischen Strukturen enthält er schätzungsweise bis zu 10 hoch 160 unterschiedliche Moleküle. Das ist eine Zahl, die zwei Zeilen einer eng beschriebenen Schreibmaschinenseite füllt. Doch nur ein Teil davon - laut Schätzungen 10 hoch 60 Moleküle - eignet sich möglicherweise als Wirkstoffe. Diese Inseln biologischer Aktivität im Ozean aller potenziellen Verbindungen ausfindig zu machen, gestaltet sich schwierig.

"Organische Synthese kann den chemischen Strukturraum nicht vollständig ermessen" erklärt Stefan Wetzel, Forscher in der Arbeitsgruppe um Herbert Waldmann am Max-Planck-Institut für molekulare Physiologie. Chemiker können also nicht alle möglichen Verbindungen kochen, um sie zu testen. Um sich in diesem Meer von Möglichkeiten dennoch zu orientieren, stellen die Forscher nun ein Navigationssystem vor. Der Scaffold Hunter erzeugt nach strukturellen Kriterien eine Karte des chemischen Strukturraums und nutzt sie, um biologisch aktive Verbindungen, z.B. Naturstoffe, aufzufinden. Das Programm eignet sich auch, um neue Wirkstoffkandidaten vorauszusagen, die in der Natur nicht vorkommen.

Die Wissenschaftler betrachten jenen medizinisch besonders relevanten Ausschnitt des chemischen Strukturraums, in dem die Moleküle ringförmige Strukturen enthalten. Dabei reduzieren sie die Moleküle jeweils auf ihr charakteristisches Grundgerüst. Diese Strukturen ordnet der Scaffold Hunter nach ihrer Ähnlichkeit in einer Art Stammbaum: Das Programm weist jedem Gerüst übergeordnete kleinere Gerüste zu, indem es nach und nach Ringe entfernt. Das ergibt unzählige Elter-Kind-Beziehungen - strukturell verwandte Moleküle unterschiedlicher Komplexität. Der Clou liegt nun darin, dass chemisch ähnliche Verbindungen sehr wahrscheinlich auch ähnliche biologische Aktivität zeigen.

"Diese strukturbasierten Abstammungslinien bilden die Äste des Baumes", erklärt Stefan Wetzel: "Mit Hilfe des Scaffold Hunters bewegen wir uns nun entlang der Äste, von komplexen hin zu immer einfacheren Strukturen mit möglicherweise ähnlicher Wirkung". So finden die Forscher strukturell einfache Grundgerüste, die als Startpunkte bei der Suche nach neuen Wirkstoffen vielversprechend sind: Die Gerüste können Chemiker dann mit verschiedenen Anhängseln variieren, um den optimalen Wirkstoff zu synthetisieren. Mit dem Scaffold Hunter lassen sich auch bioaktive Moleküle vorhersagen, die in der Natur nicht vorkommen, aber mit hoher Wahrscheinlichkeit ähnliche Aktivität zeigen wie benachbarte natürliche Moleküle. Denn das Programm kreiert und visualisiert auch virtuelle Gerüste. Wie effizient die Methode funktioniert, haben die Forscher gleich bewiesen, und zwar mit der Entdeckung neuer Hemmstoffe der Pyruvatkinase. Die Hemmung dieses Enzyms gilt als vielversprechend bei der Behandlung von Krebs und Malaria.

Noch präziser wird die Suche, wenn die Wissenschaftler bei der Navigation von vornherein Angaben über die biologische Aktivität einfließen lassen - sofern solche Daten vorhanden sind. In diesem Fall verknüpft der Scaffold Hunter nur solche Gerüste zu Zweigen, die bekanntermaßen gleiche biologische Aktivität zeigen. Diese Äste tragen mit hoher Wahrscheinlichkeit Früchte: Auch in den Lücken zwischen den Substanzen, deren biologische Aktivität bereits bekannt ist, sitzen vermutlich aktive Stoffe. "Wir haben auf diese Weise neue Hemmstoffe für 2-Lipoxygenase und den Östrogenrezeptor alpha ausfindig gemacht", sagt Steffen Renner, früher ebenfalls Forscher am Max-Planck-Institut und jetzt bei der Pharmafirma Novartis tätig. 5-Lipoxygenase ist ein Zielprotein bei der Behandlung von Entzündungen und Blasenkrebs, während der Östrogenrezeptor alpha einen wichtigen Ansatzpunkt bei der Brustkrebstherapie darstellt.

"Der Scaffold Hunter ist eine Schlüsseltechnik mit unzähligen Anwendungsmöglichkeiten" sagt Stefan Wetzel. "Dabei ist das Programm bewusst sehr bedienerfreundlich gehalten, so dass auch Nicht-Experten damit selbständig ihre Daten analysieren können", fügt er hinzu. Die Forscher stellen den Scaffold Hunter im Internet kostenlos zur Verfügung. Auch der Quellcode ist erhältlich - so könnten fortgeschrittene Nutzer das Programm an ihre Bedürfnisse anpassen, um damit noch zielgerichteter durch den chemischen Strukturraum zu navigieren.

Originalveröffentlichungen: Renner S. et al.; "Bioactivity-Guided Mapping and Navigation of Chemical Space"; Nature Chemical Biology, 28. Juni 2009

Wetzel S. et al.; "Interactive Exploration of Chemical Space with Scaffold Hunter"; Nature Chemical Biology, 28. Juni 2009

Fakten, Hintergründe, Dossiers
  • Hunter
  • Wirkstoffe
  • Proteine
  • Mexiko
  • Krebs
  • Jäger
  • Blasenkrebs
  • biology
Mehr über MPI für molekulare Physiologie
  • News

    Auszeichnung für Proteinforscher Professor Herbert Waldmann

    Die Fakultät für Chemie der Technischen Universität München (TUM) und die Jürgen Manchot-Stiftung haben Professor Herbert Waldmann die Wilhelm Manchot-Forschungsprofessur 2011 verliehen. Professor Waldmann hat der auf die Analyse von Struktur und Funktion von Proteinen gestützten Forschung ... mehr

    Chemiker findet neuen Ansatz für die Entwicklung von Medikamenten

    Ein fundamentales Prinzip, das seit Jahrzehnten in der Pharmabranche gilt, in Frage gestellt hat eine Erkenntnis des Leiters des Institutes für Organische Chemie der TU Graz, Rolf Breinbauer, gemeinsam mit Kollegen des Max-Planck-Instituts für Molekulare Physiologie in Dortmund sowie der Un ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Hochzeit von Topologie und Magnetismus in einem Weyl Halbmetall

    Topologische Ordnung ist eine neuartige Klassifizierung von Materialien anhand ihrer Quantenstruktur, welche zu der Entdeckung von bisher unentdeckten physikalischen Eigenschaften führt, die man sonst eher in der Astro- oder Hochenergiephysik gesucht hat. Diese Effekte treten verstärkt in M ... mehr

    Überraschung aus dem Urwaldboden

    Der Amazonas-Regenwald ist der größte Wald der Erde. Seine Bäume geben eine Vielzahl flüchtiger Substanzen ab, welche die chemische Zusammensetzung der Luft beeinflussen. Dazu gehören auch die sogenannten Sesquiterpene – sehr reaktive chemische Verbindungen, die besonders schnell Ozon abbau ... mehr

    Was passiert in einer Solarzelle, wenn das Licht ausgeht?

    Was in einer Solarzelle passiert, wenn das Licht ausgeht, hängt stark vom verwendeten Material ab. In herkömmlichen Siliziumsolarzellen ist die Antwort sehr einfach: der Strom, den die Zelle produziert, geht sofort auf Null zurück. Ganz anders ist dies in sogenannten Perowskitsolarzellen: H ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über Uni Frankfurt am Main
  • News

    Siliconbausteine nach Maß

    Das breit gefächerte Anwendungsspektrum der Silicone reicht von medizinischen Implantaten und Kosmetikartikeln über Hydraulik-Öle und Dichtmassen, bis hin zum Korrosionsschutz – ein entscheidendes Thema angesichts globaler Korrosionsschäden in Höhe von rund 3.3 Billionen US-Dollar pro Jahr. ... mehr

    Wie lange noch führen die USA bei den Nobelpreisen?

    Seit der ersten Vergabe im Jahr 1901 sind die meisten Nobelpreise in den Naturwissenschaften an die USA, an das Vereinigte Königreich, Deutschland und an Frankreich gegangen. Eine empirische Studie von Prof. Claudius Gros vom Institut für Theoretische Physik der Goethe-Universität hat nun g ... mehr

    Molekülbibliotheken für organische Leuchtdioden

    Die steigende Nachfrage nach immer leistungsfähigeren Smartphones, Tabletcomputern und Heimkinos stellt die Displaytechnologie vor wachsende Herausforderungen. Gegenwärtig werden sie am umfassendsten von organischen Materialien gemeistert. Insbesondere mit Molekülen aus der Stoffklasse der ... mehr

  • Universitäten

    Johann Wolfgang Goethe-Universität Frankfurt (Main)

    mehr

  • q&more Artikel

    Warum Biosimilars und nicht Biogenerika?

    Bereits seit 2006 gibt es eine Gruppe gentechnisch hergestellter Medikamente, die unter der Bezeichnung „Biosimilars“ firmieren. Bis vor einem Jahr blieb diese Gruppe selbst in Fachkreisen eher unauffällig. Das ändert sich jedoch derzeit, da kürzlich ein erster Biosimilar-Antikörper zugelas ... mehr

    Paradigmen­wechsel

    Was wäre die Medizin ohne Arzneimittel? Aber werden Arzneimittel heute optimal ­eingesetzt? einesfalls, wie wir heute dank der Erkenntnisse aus der molekularen ­Medizin wissen. Denn beim Einsatz von Arzneimittel gilt es, zwei Aspekte zu beachten: ­die Krankheit und den Patienten. Erst langs ... mehr

    Polar und potenziell trinkwassergefährdend

    Trinkwasser ist in Deutschand ausreichend vorhanden und von überwiegend hoher Qualität. Für die Gewinnung von Trinkwasser in Deutschland wird vor allem Grund­wasser (69,6 %) genutzt, 12,4 % werden aus Seen und Talsperren ­entnommen. Der Anteil von Trinkwasser, das aus Uferfiltrat gewonnen w ... mehr

  • Autoren

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke, Jg. 1955, studierte Medizin an der Medizinischen Hochschule Hannover (MHH; Approbation 1985) und promovierte mit der wissenschaftlich besten Dissertation des Jahres 1986. Nach zwei Jahren als Assistenzarzt in der Universitätskinder­klinik Göttingen begann er 1987 an der ... mehr

    Prof. Dr. Theo Dingermann

    Theodor Dingermann, Jg. 1948, studierte Pharmazie in Erlangen und promovierte 1980 zum Dr. rer. nat. 1990 erhielt er einen Ruf auf die C4-Professur für pharmazeutische Biologie der Universität Frankfurt. Von 2000 bis 2004 war er Präsident der Deutschen Pharmazeutischen Gesellschaft. Ferner ... mehr

    Prof. Dr. Wilhelm Püttmann

    Wilhelm Püttmann, Jg. 1953, studierte Chemie an der RWTH Aachen und der Universität zu Köln und promovierte 1980 auf dem Gebiet der organischen Synthese bei Prof. Emanuel Vogel in Köln. Nach einer zweijährigen Postdoktorandenzeit erfolgte der Wechsel in die geochemische Analytik mit der Übe ... mehr

Mehr über TU Eindhoven
  • News

    Von der Natur inspiriert: Skalierbare Chemiefabrik durch Photomikroreaktoren

    Professor Timothy Noël von der Technischen Universität Eindhoven/NL erhält den DECHEMA-Preis 2017. Damit werden seine bahnbrechenden Arbeiten zur kontinuierlichen photochemischen Umwandlung in mikrofluidischen Systemen gewürdigt. Timothy Noël ist einer der führenden Experten auf diesem Gebi ... mehr

    Die Sonne anzapfen

    Ein Team von Forschern der Humboldt-Universität zu Berlin und der Technischen Universität Eindhoven in den Niederlanden hat dünne Plastikfilme entwickelt, die sich kontinuierlich im Sonnenlicht bewegen. Derartige Materialien, die die Energie des Sonnenlichtes direkt in Bewegung umwandeln kö ... mehr

    Die Kinderstube der Nanopartikel

    Nanopartikel sind vielseitige Hoffnungsträger: Sie sollen als Vehikel für medizinische Wirkstoffe oder Kontrastmittel ebenso dienen wie als elektronische Speicherpunkte oder Verstärkung in Stützmaterialien. Um sie für die verschiedenen Anwendungen gezielt in Form zu bringen, leisten Forsche ... mehr

  • Universitäten

    Technische Universiteit Eindhoven

    mehr

Mehr über University of New Mexico
  • News

    Platin-Käfige

    Winzigste Strukturen aus Edelmetallen wie Platin sind interessant wegen ihrer großen Bandbreite an biomedizinischen, katalytischen und optischen Anwendungen. Poröse Nanokugeln sind beispielsweise ideal für katalytische Anwendungen, die eine hohe Oberfläche erfordern, aber mit einer geringen ... mehr

  • Universitäten

    University of New Mexico

    mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.