25.04.2017 - Max-Planck-Institut für Chemie

Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen

Glasartige Festpartikel können den atmosphärischen Transport organischer Schadstoffe über weite Distanzen hinweg ermöglichen

Sekundäre organische Aerosole (SOA) entstehen bei der Oxidation flüchtiger organischer Verbindungen in der Atmosphäre. Sie sind für einen Großteil des Feinstaubs in der Luft verantwortlich und haben einen starken Einfluss auf die regionale und globale Luftqualität. Bis vor kurzem wurde angenommen, dass SOA-Partikel ölige, flüssige Tropfen sind. Aktuelle Studien zeigen jedoch, dass SOA-Partikel, abhängig von der chemischen Zusammensetzung sowie Temperatur und Feuchtigkeit, auch einen glasartigen Festkörperzustand annehmen können. Ob die Partikel in flüssiger oder fester Form vorliegen, wirkt sich sehr stark auf ihr Verhalten im Zusammenspiel mit Wolken und Spurengasen aus und bestimmt auch, welchen Einfluss sie auf das Klima und die menschliche Gesundheit haben. Bisher jedoch war unklar, ob und wo in der Atmosphäre SOA-Partikel flüssig oder fest vorliegen. Eine neue Studie eines internationalen Teams von Wissenschaftlern, darunter Forscher des Max-Planck-Instituts für Chemie in Mainz und der University of California in Irvine, USA, bietet nun aber Einblicke in die globale Verteilung des Phasenzustands organischer Partikel in der Atmosphäre.

„Wir haben herausgefunden, dass SOA-Partikel meist in der Nähe der Erdoberfläche flüssig sind und im Rest der Atmosphäre glasartig“, erklärt Manabu Shiraiwa, Hauptautor der Studie, die vor kurzem in der Open-Access-Zeitschrift „Nature Communications“ veröffentlicht wurde. Shiraiwa, ehemaliger Gruppenleiter beim MPI für Chemie in Mainz, arbeitet jetzt als Assistant Professor im Fachbereich Chemie an der University of California, Irvine.

Glasartige SOA-Partikel können organische Schadstoffe vor dem Abbau durch atmosphärische Oxidationsmittel schützen. Das könnte eine Erklärung dafür sein, dass hohe Konzentrationen solcher Schadstoffe nicht nur in der Nähe anthropogener Quellen sondern auch in abgelegenen Meeres- und Polarregionen beobachtet werden. Ob SOA-Partikel glasartig oder flüssig sind, hängt jedoch stark von ihrer chemischen Zusammensetzung, der Umgebungstemperatur sowie der Luftfeuchtigkeit ab. Daher müssen die molekulare Zusammensetzung und die zugehörigen physikochemischen Eigenschaften der sekundären organische Aerosole bekannt sein, damit eine zuverlässige Einschätzung des Phasenzustands der Partikel und ihrer Auswirkungen vorgenommen werden kann. Diese wurden aber in früheren Studien nicht gut eingegrenzt.

„Zum ersten Mal konnten wir jetzt eine komplexe molekulare Beschreibung der physikalischen und chemischen Eigenschaften von SOA-Partikeln in einem modernen globalen Modell erstellen, um die räumliche und zeitliche Variabilität des SOA-Phasenzustands in der Atmosphäre zu berechnen“, führt Ulrich Pöschl, Direktor der Abteilung für Multiphasenchemie am MPI für Chemie, aus. Jos Lelieveld, Direktor der Abteilung Atmosphärenchemie am Mainzer Institut fügt hinzu, dass „weitere Studien geplant sind, um die Einfluss verschiedener Phasenzustände der sekundären organische Aerosole auf Wolken, Klima, Luftqualität und Gesundheit zu messen“.

Fakten, Hintergründe, Dossiers
  • flüchtige organisch…
Mehr über MPI für Chemie
  • News

    Spiegelmoleküle verraten Trockenstress von Wäldern

    Weltweit geben Pflanzen etwa 100 Millionen Tonnen an Monoterpenen an die Atmosphäre ab. Zu diesen flüchtigen organischen Molekülen zählen viele Duftstoffe wie beispielsweise das Molekül Pinen, das für seinen frischen Kiefernduft bekannt ist. Da diese Moleküle sehr reaktiv sind und winzige A ... mehr

    Innenraumchemie neu denken

    Wir verbringen typischerweise 90 Prozent unserer Zeit in Innenräumen. Dort sind wir von einem unsichtbaren Molekülcocktail umgeben: Wände, Böden und Möbel gasen aus, beim Kochen oder Putzen entweichen chemische Stoffe in die Luft und je nach Umgebung gelangen auch Schadstoffe von außen nach ... mehr

    Sauberer Himmel durch Corona-Lockdown

    Während des ersten Lockdowns der Corona-Pandemie haben sich die Rußkonzentrationen in der Atmosphäre über West- und Südeuropa fast halbiert. Das geht aus dem Vergleich zweier Messkampagnen des deutschen Forschungsflugzeugs HALO von 2017 und 2020 hervor. Etwa 40 Prozent der Reduktion sei auf ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Chemie

    Vorläufer unseres Instituts ist das Kaiser-Wilhelm-Institut für Chemie, das 1912 in Berlin-Dahlem eröffnet wurde. Es wurde 1949 in die Max-Planck-Gesellschaft übernommen und als Max-Planck-Institut für Chemie in Mainz neu aufgebaut. Zu Ehren Otto-Hahns trägt das Institut den Zweitnamen Otto ... mehr

Mehr über UC Irvine
  • News

    Kohlenstoff-Nanostruktur stärker als Diamanten

    Forscher an der University of California, Irvine und anderen Institutionen haben architektonisch "plate-nanolattices" - nanometergroße Kohlenstoffstrukturen - entworfen, die als Verhältnis von Festigkeit zu Dichte stärker sind als Diamanten. In einer neueren Studie in Nature Communications ... mehr

    Quantifizierung der chemischen Effekte von Luftschadstoffen auf die menschliche Gesundheit

    Forscher entwickeln ein Modell, das die chemische Exposition-Wirkungsbeziehung zwischen Luftschadstoffen und reaktiven Sauerstoffverbindungen in der Oberflächenflüssigkeit der Atemwege liefert. Luftverschmutzung kann zu oxidativem Stress und negativen Auswirkungen auf die Gesundheit wie As ... mehr

    Der Ethanausstoß sinkt weltweit

    (dpa) Im vergangenen Vierteljahrhundert ist der jährliche Ethanausstoß in die Atmosphäre um mehr als 20 Prozent zurückgegangen. Dies liegt vor allem daran, dass weniger flüchtiges Ethangas bei der Gewinnung und Verarbeitung von Erdöl in die Atmosphäre entweicht. Aus dem gleichen Grund sei v ... mehr