Meine Merkliste
my.chemie.de  
Login  

Nilblau



Strukturformel
Allgemeines
Name Nilblau
Andere Namen
  • 5-Amino-9-(diethylamino) benzo[a]phenoxazin-7-ium
  • C.I. 51180
  • Basic Blue 12
Summenformel C20H20N3O+
CAS-Nummer
  • 2381-85-3 (Hydrochlorid)
  • 3625-57-8 (Hydrogensulfat)
Kurzbeschreibung grün glänzendes, kristallines Pulver
Eigenschaften
Molare Masse 318,392 g·mol−1
Aggregatzustand fest
Schmelzpunkt >300 °C [1]
Siedepunkt Zersetzung
Löslichkeit

löslich in Wasser (50 g·l−1 bei 25 °C) [1]

Sicherheitshinweise
Gefahrstoffkennzeichnung
R- und S-Sätze R: 36-38 [1]
S: 22 [1]
MAK

?

WGK 2 (wassergefährdend) [1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Nilblau, oft auch als Nilblau A (meist nur das Hydrogensulfat) bezeichnet, ist ein fluoreszierender Phenoxazin-Farbstoff.

Als Indikatorfarbstoff zeigt Nilblau im saurem Milieu eine blaue Farbe und ist im Alkalischen rot.[2]

Durch Kochen einer Lösung von Nilblau mit Schwefelsäure entsteht der Farbstoff Nilrot.

Inhaltsverzeichnis

Chemisch physikalische Eigenschaften

Nilblau ist ein Fluoreszenzfarbstoff. Die Fluoreszenz zeigt besonders in apolaren Lösungsmitteln eine eine hohe Quantenausbeute:[3]

Die Absorption und Emissionsmaxima von Nilblau sind stark abhängig vom pH-Wert und dem verwendeten Lösungsmittel.

Die Absorptions- und Emissionsmaxima von Nilblau in Abhängigkeit vom verwendeten Lösungsmittel[3]
Lösungsmittel Absorption λmax
(nm)
Emission λmax
(nm)
Toluol 493 574
Aceton 499 596
Dimethylformamid 504 598
Chloroform 624 647
1-Butanol 627 664
2-Propanol 627 665
Ethanol 628 667
Methanol 626 668
Wasser 635 674
1,0 N Salzsäure (pH=1,0) 457 556
0,1 N Natronlauge (pH=11,0) 522 668
Ammoniakwasser (pH=13,0) 524 668

Die Fluoreszenzdauer von Nilblau wurde in Ethanol mit 1,42 ns bestimmt. Dies ist kürzer als der entsprechende Wert von Nilrot mit 3,65 ns. Die Fluoreszenzdauer ist relativ invariant gegenüber Verdünnungen im Bereich von 10−3 – 10−8 mol·dm−3.[3]

Die Nilblau-Färbung

Nilblau wird zur histologischen Anfärbung von biologischen Präparaten verwendet. Dabei gelingt die Unterscheidung zwischen neutralen Lipiden (Triglyceride, Cholesterinester, Steroide) die rosa angefärbt werden und sauren (Fettsäuren, Chromolipide, Phospholipide) die blau angefärbt werden.[4]

Die Nilblau-Färbung nach Kleeberg benötigt folgende Chemikalien

Der Arbeitsablauf

Das Präparat wird in Formol fixiert. Daraus werden Gefrierschnitte oder Zupfpräparate hergestellt. Anschließend wird für 20 Minuten in die Nilblau-Lösung getaucht und danach mit Wasser abgespült. Zur besseren Differenzierung wird in 1%ige Essigsäure für 10-20 Minuten eingetaucht, bis die Farbtöne rein sind. Dies kann u.U. schon nach 1-2 Minuten der Fall sein. Dann wird in mehrfach gewechseltem Wasser gründlich gewässert (ein bis zwei Stunden). Danach kann das angefärbte Präparat auf einen Objektträger gezogen und der Wasserüberschuss abgesaugt werden. Der Einschluss des Präparates kann in Glycerin oder lauwarmer Glyceringelatine erfolgen.

Das Ergebnis

Ungesättigte Glyceride sind rosa, Kerne und Elastica dunkelblau, Fettsäuren und zahlreiche Fettsubstanzen und Fettgemische blau bis violett gefärbt.[5]

Beispiel: Nachweis von Poly-β-hydroxybutyrat-Granula (PHB)

Die PHB-Granula in den Zellen von Pseudomonas solanacearum können durch Anfärbung mit Nilblau A sichtbar gemacht werden. Die PHB-Granula der gefärbten Ausstriche zeigen unter einem Epifluoreszenzmikroskop bei 450 nm Anregungswellenlänge unter Ölimmersion, bei einer 1000 fachen Vergrößerung eine kräftige orangefarbene Fluoreszenz.[6]

Nilblau in der Onkologie

Derivate des Nilblau sind potentielle Photosensibilisatoren in der Photodynamischen Therapie (PDT) von malignen Tumoren. Diese Farbstoffe werden durch Farbstoffaggregation in den Tumorzellen, speziell in den Lipidmembranen und/oder sequestriert in den subzellularen Organellen, stark angereichert.[7]

Mit dem Nilblau-Derivat N-Ethyl-Nilblau (EtNBA) konnte in Tierversuchen zwischen normalem und prämalignem Gewebe mittels Fluoreszenzbildgebung bzw. Fluoreszenzspektroskopie unterschieden werden. EtNBA zeigt dabei keine phototoxischen Effekte.[8]

Einzelnachweise

  1. a b c d e f chemdat.de, Produktinformationen zu Nilblau, abgerufen am 27. Juni 2007
  2. Universität Bochum, Ketogenese, Lipoproteine - biochemische Grundlagen, abgerufen am 27. Juni 2007
  3. a b c Jose J et. al., Benzophenoxazine-based fluorescent dyes for labeling biomolecules, in Tetrahedron, 62/2006, S.11021-37
  4. Roche Lexikon, abgerufen am 25. Juni 2007
  5. Benno Romeis, Mikroskopische Technik, 15. Aufl., R. Oldenbourg Verlag, München, 1948
  6. 97/647/EG: Entscheidung der EU-Kommission vom 9. September 1997 über ein vorläufiges Versuchsprogramm für Diagnose, Nachweis und Identifizierung von Pseudomonas solanacearum (Smith) Smith in Kartoffeln, abgerufen am 27. Juni 2007
  7. Lin CW et.al., Lysosomal localization and mechanism of uptake of Nile blue photosensitizers in tumor cells, in Cancer Research, 51/1991, S. 2710-9 PMID 2021950
  8. van Staveren HJ, Fluorescence imaging and spectroscopy of ethyl nile blue A in animal models of (pre)malignancies, in Photochemistry and photobiology, 73/2001, S. 32-8. PMID 11202363

Literatur

  • Green FJ, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators, Aldrich Chemical Company, Milwaukee, 1990.
  • Rao J et. al., Fluorescence imaging in vivo: recent advances, in Current Opinion in Biotechnology, 18/2007, S. 17-25.
 
Dieser Artikel basiert auf dem Artikel Nilblau aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.