Meine Merkliste
my.chemie.de  
Login  

Erster direkter "chemischer Fingerabdruck" eines Exoplaneten, der einen sonnenähnlichen Stern umkreist

18.01.2010

Astronomen ist es gelungen, die erste Direktmessung eines Spektrums - eines "chemischen Fingerabdrucks" - für einen Planeten vorzunehmen, der einen fernen, sonnenähnlichen Stern umkreist. Die Messung gibt Aufschluss über die chemische Zusammensetzung der Planetenatmosphäre und ebnet den Weg für eine neue Generation direkter Messungen von Spektren, eine wichtige Technik bei der Suche nach Planeten, auf denen Leben möglich ist. Messungen dieser Art versprechen auch neue Erkenntnisse darüber, wie Planeten entstehen.

Die Suche nach Leben auf fremden Planeten ist eines der ehrgeizigsten Ziele der modernen Astronomie. Während der letzten Jahre haben Astronomen mehr als 400 Exoplaneten entdeckt (also Planeten, die um andere Sterne als die Sonne kreisen). Um einschätzen zu können, ob es auf solchen Planeten die nötigen Voraussetzungen für die Entwicklung von Leben gibt, oder ob dort sogar Lebensformen existieren, müssen Astronomen das Spektrum, den "chemischen Fingerabdruck" eines Planeten ermitteln. Solche Messungen geben Aufschluss über die Moleküle, die in der Planetenatmosphäre vorhanden sind. Jetzt ist es Astronomen erstmals gelungen, ein solches Spektrum für einen Exoplaneten zu registrieren, der einen normalen, sonnenähnlichen Stern umkreist - ein wichtiger Schritt für die Suche nach Leben auf fremden Welten.

Die Forschergruppe, zu der drei Wissenschaftler des Max-Planck-Instituts für Astronomie (MPIA) und zwei Wissenschaftler kanadischer Universitäten gehören, hat das Planetensystem des hellen, sehr jungen Sterns HR 8799 untersucht, der am Nachthimmel im Sternbild Pegasus steht und rund 130 Lichtjahre von uns entfernt ist. Eine frühere Untersuchung hatte im Jahre 2008 drei Riesenplaneten nachweisen können, die diesen Stern umkreisen. Carolina Bergfors (MPIA), die im Rahmen ihrer Doktorarbeit an den Beobachtungen beteiligt war, erzählt: "Unser Beobachtungsziel war der mittlere der drei Riesenplaneten. Er besitzt ungefähr zehn Mal soviel Masse wie Jupiter, und hat eine Oberflächentemperatur von rund 800 Grad Celsius". Die Forscher nahmen das Spektrum mit Hilfe des Instruments NACO auf, das am Very Large Telescope (VLT) der Europäischen Südsternwarte installiert ist, und nutzten dabei insbesondere die Kamera-Spektrografen-Kombination CONICA, die am Max-Planck-Institut für Astronomie und am Max-Planck-Institut für Extraterrestrische Physik entwickelt wurde.

Da der Stern mehrere tausend Mal heller ist als der Planet, und die beiden von der Erde aus gesehen sehr nah beieinander stehen, stellt die Messung des Planetenspektrums eine enorme Herausforderung dar. Markus Janson von der Universität Toronto, der Erstautor des Fachartikels, in dem die neuen Ergebnisse vorgestellt werden, erklärt: "Es ist, als wolle man aus zwei Kilometern Entfernung eine Kerze beobachten, die direkt neben einer hellen 300-Watt-Lampe steht." Carolina Bergfors ergänzt: "Wir mussten mehr als fünf Stunden belichten, um das Planetenspektrum aus dem weit helleren Licht des Sterns herauskitzeln zu können."

In den kommenden Jahren hoffen die Astronomen, mit dieser Beobachtungstechnik wichtige Informationen darüber zu gewinnen, wie Planeten entstehen. Erster Schritt dürfte die Aufnahme der Spektren der beiden anderen Riesenplaneten von HR 8799 sein; damit hätten die Astronomen zum ersten Mal die Gelegenheit, die Spektren mehrerer Planeten ein und desselben Exoplanetensystems miteinander zu vergleichen. Entfernteres Ziel ist es, auf dieses Weise lebensfreundliche Exoplaneten zu identifizieren oder sogar Spuren von einfachen außerirdischen Lebensformen nachzuweisen.

Aktuell geben die neuen Ergebnisse Anlass, die derzeitigen Modelle der Atmosphäre des Exoplaneten zu überdenken. Wolfgang Brandner (MPIA), Koautor des Fachartikels, erklärt: "Die Eigenschaften des Spektrums sind nicht mit den heutigen theoretischen Modellen vereinbar. Offenbar gilt es, die Eigenschaften der Staubwolken in der Planetenatmosphäre genauer zu modellieren - oder die chemische Zusammensetzung der Atmosphäre ist ganz anders, als bislang angenommen."

Originalveröffentlichung: M. Janson et al.; "Spatially resolved spectroscopy of the exoplanet HR 8799 c"; Astrophysical Journal

Fakten, Hintergründe, Dossiers
Mehr über Max-Planck-Gesellschaft
  • News

    Wie Graphen-Nanoteilchen die Auflösung von Mikroskopen verbessern

    Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materia ... mehr

    Präzise Schadstoffermittlung aus dem All

    Stickoxide (NO und NO2) tragen wesentlich zur Luftverschmutzung bei. Um die Luftqualität möglichst gut vorherzusagen und Strategien zur Reduktion der Verschmutzung zu entwickeln, sind präzise Emissionsdaten notwendig. Dazu helfen unter anderem tägliche Satellitenmessungen. Das Messgerät bli ... mehr

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über MPI für Astronomie
  • News

    Tröpfchen für Tröpfchen kosmische Chemie simulieren

    Zwei Astronomen des Max-Planck-Instituts für Astronomie und der Universität Jena haben eine elegante neue Methode entwickelt, die es erlaubt, die Energie einfacher chemischer Reaktionen unter ähnlichen Bedingungen zu messen wie bei Atomen und Molekülen im frühen Sonnensystem. Die neue Techn ... mehr

    Stellarer Kokon mit seltsamer chemischer Zusammensetzung entdeckt

    Ein japanisches Astronomenteam hat erstmals einen heißen molekularen Kern außerhalb der Milchstraße entdeckt. Die heiße und dichte Ansammlung komplexer Moleküle, die einen neugeborenen Stern umgibt und mit ALMA ausfindig gemacht werden konnte, besitzt eine völlig andere molekulare Zusammens ... mehr

    Neue Methode erschließt Exoplanetenchemie auch kleineren Teleskopen

    Eine Gruppe von Astronomen, der auch Forscher des Max-Planck-Instituts für Astronomie angehören, hat eine neue Methode zur Untersuchung der Atmosphären von Exoplaneten (Planeten, die andere Sterne umkreisen als die Sonne) entwickelt und getestet. Damit werden solche Messungen erstmals auch ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Astronomie

    Das Max-Planck-Institut für Astronomie (MPIA) in Heidelberg ist eines von rund 80 Instituten der Max-Planck-Gesellschaft. Seine Gründung im Jahre 1967 ging aus der Einsicht hervor, dass ein überregionales, mit leistungsfähigen Teleskopen ausgestattetes Institut erforderlich sei, um internat ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.