06.02.2018 - Max-Planck-Institut für Struktur und Dynamik der Materie

Supraleiter verdienen sich ihre Streifen

Neue Terahertz-Techniken führen zum ersten Nachweis der schwer zu erfassenden gestreiften Supraleitung in Kupraten oberhalb der supraleitenden Übergangstemperatur.

Das Verständnis der Hochtemperatur-Supraleitung (high Tc) ist seit ihrer Entdeckung in Kupferoxidverbindungen im Jahr 1986 eine ungelöste Herausforderung. Um sie zu bewältigen, müssen die physikalischen Phasen in der Nähe der Supraleitung erforscht werden – typischerweise  bei Temperaturen oberhalb von Tc oder bei geringeren Dotierungen, als zur Entwicklung dieses Zustands erforderlich sind.

Jetzt hat ein Team unter der Leitung von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik (MPSD) in Hamburg erstmals einen verdeckten supraleitenden Zustand oberhalb der supraleitenden Übergangstemperatur Tc nachgewiesen. Solch ein Zustand bleibt für die meisten experimentellen Proben unsichtbar und ist daher schwer zu beobachten.

Rajasekaran und seine Mitarbeiter nutzten neuartige Terahertz-Techniken, um einen streifenförmigen Supraleitungszustand oberhalb der supraleitenden Übergangstemperatur in einer Kupratverbindung nachzuweisen. Dieser Zustand entsteht, weil sich die supraleitende Flüssigkeit, welche den widerstandslosen Strom trägt, nicht homogen verteilt. In dem untersuchten System bilden sich stattdessen eindimensionale Flüsse, welche entlang der Kristallaxis um 90˚ rotiert sind.

Supraleitung, oder der verlustfreie Transport von Elektrizität, wurde zuerst in Metallen beobachtet, die fast bis auf den absoluten Nullpunkt gekühlt wurden (~ -270 Grad Celsius). In den letzten Jahrzehnten wurden neue, meist keramische, Werkstoffe wie z. B. dotierte Kupferoxide (Kuprate) entdeckt. In ihnen tritt Supraleitung bei wesentlich höheren Temperaturen (Tc ~ -150 Grad Celsius) auf. Der Mechanismus, auf dem diese Hochtemperatur-Supraleitung basiert, bleibt jedoch bis heute ein Rätsel.

Gekühlte Kuprate entwickeln nicht nur einen supraleitenden Zustand, sondern auch andere Phasen, die mit der ausgebildeten supraleitenden Flüssigkeit wechselwirken. Besonders bemerkenswert ist ein mit dem Supraleiter verflochtener Zustand, bei dem die Flüssigkeit räumlich moduliert und nicht homogen angeordnet ist. Obwohl ein gestreifter Supraleiter elektrische Ströme nicht effizient überträgt, kann dieser Zustand genutzt werden, um die kritische Temperatur eines Supraleiters zu erhöhen.

Kuprat-Supraleiter sind Schichtmaterialien mit abwechselnd supraleitenden und isolierenden Ebenen. Die supraleitende Phase wird in jeder Schicht gebildet, und die dreidimensionale Supraleitung wird durch quantenmechanisches Tunneln senkrecht zu den Ebenen ermöglicht.

In einem gestreiften Supraleiter sind die Tunnelströme gleich Null. Das heißt, die Ströme fließen lokal an jedem Punkt im Raum, aber ihre Gesamtsumme verschwindet. Es ist daher schwierig, die Existenz eines gestreiften Supraleiters zu erfassen.

Zur Überwindung dieses Problems verwendeten Rajasekaran, Cavalleri und ihre Mitarbeiter starke Tunnelströme – weit über dem Niveau, welches üblicherweise zum Nachweis eines Supraleiters verwendet wird.  In Ihrem Experiment wiesen sie nach, dass der Tunneleffekt auch bei gestreifter Supraleitung nicht mehr gleich Null ist.

Zusammen mit Theoriekollegen aus der Arbeitsgruppe von Ludwig Mathey an der Universität Hamburg haben die Wissenschaftler des MPSD auch eine quantitative Beschreibung der Ergebnisse geliefert, die nun eine solide theoretische Basis haben.

Die Studie bezieht sich weitgehend auf frühere Arbeiten der Cavalleri-Gruppe, die darauf abzielen, verdeckte Supraleitung in komplexen Materialien zu manipulieren. Sie eröffnet neue Wege, um versteckte Ordnungen in vielen anderen Festkörpersystemen zu untersuchen.

Fakten, Hintergründe, Dossiers
  • Kuprate
  • Hochtemperatursupraleitung
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Wie sich Ladungen in Solarzellen bewegen

    Wenn die Sonne aufgeht, beginnt ein komplexer Tanz in Perowskit-Solarzellen - einem Typ von Solarzellen, der in Zukunft bestehende Silizium-Solarzellen ergänzen oder ersetzen könnte: Elektronen werden durch Licht mit Energie versorgt und bewegen sich. Wo sich Elektronen bewegen, hinterlasse ... mehr

    Grüne Chemie: Nachhaltige p-Xylol-Produktion

    Limonade, Saft und Mineralwasser kommen oft in PET-Flaschen daher. Diese sind zwar praktisch und zweckmäßig, ihre Herstellung ist jedoch komplex und nicht unbedingt nachhaltig. Das Ausgangsmaterial für Terephthalsäure, die zur Herstellung von gesättigten Polyestern wie PET (Polyethylenterep ... mehr

    Neuartiges Mikroskop erkennt die Händigkeit eines einzelnen Nanoteilchens

    Wissenschaftler der Forschungsgruppe Mikro, Nano und Molekulare Systeme am Max-Planck-Institut für Intelligente Systeme haben ein neuartiges Spektroskopie-Mikroskop entwickelt, mit dem sie ein einzelnes Nanoteilchen in Echtzeit beobachten können. So konnten sie erstmals die Händigkeit eines ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr