16.03.2018 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Synthese von Graphen verstanden

Forscher klären Mechanismus zur Herstellung von Graphen aus Graphit auf

Wissenschaftler der Freien Universität Berlin, der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Universität Ulm haben gemeinsam die nasschemische Synthese von Graphen aus Graphit entscheidend vorangetrieben und dabei den zugrundeliegenden Mechanismus aufgeklärt. Dabei lösten sie das grundsätzliche Problem, eine einzelne Schicht von Graphen aus einem Graphitkristall herauszulösen. Dem Team um Prof. Dr. Siegfried Eigler von der Freien Universität Berlin gelang es, mithilfe chemischer Funktionalisierung einzelne Kohlenstofflagen von Graphit zu stabilisieren. Der Mechanismus wurde von der Gruppe um Prof. Dr. Bernd Meyer von der FAU mithilfe von Computersimulationen belegt. Dem Team von Prof. Dr. Ute Kaiser an der Universität Ulm gelang es, die Struktur des nasschemisch hergestellten Graphens mit atomarer Auflösung mittels Elektronenstrahlmikroskopie sichtbar zu machen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht. Das Verständnis zur chemischen Funktionalisierung von Graphen und dessen Synthese ist entscheidend, um Graphen in Zukunft in hoher Qualität verfügbar zu machen. Derzeit werden große Anstrengungen unternommen, um basierend auf Graphen eine neuartige Elektronik jenseits von Silizium zu entwickeln.

Bei Graphit handelt es sich um eine Schichtfolge einzelner Graphenlagen, die aus Kohlenstoff bestehen. Die Kohlenstoffatome sind in Graphen in einem Honigwabenmuster angeordnet; sie stellen ein zweidimensionales Material dar, das außergewöhnliche elektronische Eigenschaften zeigt. Physikalische Experimente an Graphen haben im Jahr 2010 zum Nobelpreis für Physik geführt.

Der Entwicklung von Elektronik auf der Grundlage von Graphen steht das Problem entgegen, die hierfür notwendigen großen Mengen an Graphen zu gewinnen, da es beinahe unmöglich ist, Graphen aus Graphit unbeschadet zu isolieren. Es ist zwar bekannt, dass der Abstand der einzelnen Graphenlagen im Graphit erhöht werden kann, jedoch bereitet es nach wie vor Schwierigkeiten, die Graphenlagen unzerstört und in großen Mengen abzulösen und als einzelne Lagen in Lösung zu stabilisieren. Ohne Stabilisation würden sich einzelne Graphenlagen wieder zu Graphit oder undefinierten Kohlenstoffpartikeln zusammenschließen. Dadurch gingen die herausragenden Eigenschaften von Graphen verloren.

Es gelang den Wissenschaftlern nachzuweisen, dass hochkristalliner Graphit mit wohldefinierter Schichtabfolge besonders geeignet ist, um in eine sogenannte Interkalationsverbindung überführt zu werden, bei der Moleküle und Ionen zwischen den Kohlenstoffschichten eingelagert werden. Dies gelingt besonders leicht, wenn die Graphenlagen zusätzlich partiell elektronisch oxidiert, das heißt positiv aufgeladen werden. Moleküldynamik-Simulationen zeigen, dass die Schichtfolge der Graphenlagen im Graphit zusammen mit deren elektronischer Oxidation die Reibung der Moleküle zwischen den Lagen drastisch vermindert. Umgekehrt bedeutet dies, dass eine hohe Reibung von Molekülen im Schichtmaterial deren Beweglichkeit einschränkt und deshalb Graphit nicht aktiviert werden kann. Die Aktivierung ermöglicht es, Wassermolekülen im folgenden Schritt mit dem aktivierten Graphit zu reagieren. Dadurch werden Alkoholgruppen auf die Oberfläche von Graphen angebunden, wodurch es möglich wird, einzelne Lagen von Graphen abzulösen und in Wasser zu stabilisieren. Dieses abgelöste polare Graphen konnte schließlich auf Oberflächen übertragen und zu ungeladenem Graphen reduziert werden. In der Folge konnte das Team um Prof. Dr. Ute Kaiser von der Universität Ulm am Fachbereich Materialwissenschaftliche Elektronenmikroskopie die Struktur des gewonnenen hochqualitativen Graphens mit atomarer Auflösung sichtbar machen.

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Glyphosat mit einfachen Mitteln aus Wasser entfernen

    Glyphosat zählt zu den meistgenutzten Herbiziden weltweit – und gleichzeitig zu den meistdiskutierten chemischen Verbindungen: Steht es doch unter Verdacht, eine krebserzeugende Wirkung zu haben. Diverse Klagen in den USA und Diskussionen über Zulassungsbeschränkungen beziehungsweise Verbot ... mehr

    Dem nanotechnologischen Traum nahe

    Einwandige, einheitliche Kohlenstoffnanoröhren (SWCNTs) herzustellen, gehört zu den großen Herausforderungen der Materialwissenschaft. Es ist möglich, sie mithilfe von Vorläufermolekülen, sogenannten Keimen, die das Wachstum vorgeben, zu erzeugen. Jedoch ist deren Synthese weitgehend unerfo ... mehr

    Nanopartikel mit neuartigen elektronischen Eigenschaften

    Die optischen und elektronischen Eigenschaften von Aluminiumoxid-Nanopartikeln, die eigentlich elektronisch inert und optisch inaktiv sind, können gesteuert werden. Das haben Forscher des Lehrstuhls für Organische Chemie II der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) herausg ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

Mehr über Freie Universität Berlin
  • News

    Durchbruch: Reaktiver Zucker nach mehr als 100 Jahren Suche nachgewiesen

    Komplexe Zucker sind allgegenwärtig. Sie machen 80% der Biomasse aus und sind essenzielle Bestandteile von lebenden Organismen. Die chemische Herstellung von komplexen Zuckern ist jedoch nach wie vor sehr schwierig. Einem Team von Forschern um Prof. Dr. Kevin Pagel von der Freien Universitä ... mehr

    Was passiert, wenn das Atomgitter eines Magneten erhitzt wird?

    Ein internationales Forscherteam hat nach eigener Einschätzung physikalische Prozesse aufgeklärt, die bei einer extrem plötzlichen Erhitzung des Atomgitters von sogenannten Ferrimagneten ablaufen. Ferrimagnete bestehen aus zwei Sorten atomarer Magnete, deren Magnetisierungen unterschiedlich ... mehr

    Wie Enzyme Wasserstoff produzieren

    Jahrelang hatten Forscher angenommen, dass es bei der Reaktion einen hoch instabilen Zwischenzustand geben müsse. Nachweisen konnte ihn niemand. Bis jetzt. Den entscheidenden Katalyseschritt bei der Wasserstoffproduktion durch Enzyme haben Forscher der Ruhr-Universität Bochum und der Freien ... mehr

  • q&more Artikel

    Silber-Lipid-Zwerge

    Ca. 2–3 % der Bevölkerung leiden an Neurodermitis, eine ­Heilung gibt es nicht. Erforderlich ist eine mit starken Nebenwirkungen belastete symptomatische Therapie mit Arzneimitteln, z.B. Glucokortikoide. Mit der „Silber-Nanotechnologie“ wurde eine arznei­mittelfreie Anwendung gegen leichte ... mehr

  • Autoren

    Prof. Dr. Rainer H. Müller

    Rainer H. Müller studierte und promovierte in Pharmazie in Kiel. Anschließend arbeitete er in der Nanotechnologie 5 Jahre an den Universitäten Nottingham und Paris-Süd. Seit 1992 ist er Professor für Pharmazeutische Technologie an der Freien Universität Berlin. Prof. Müller ist Miterfinder ... mehr

    Dr. Cornelia M. Keck

    Cornelia M. Keck ist Pharmazeutin, studierte und promovierte 2006 an der Freien Universität Berlin. Rund ein Jahr arbeitete sie dabei an der Otago University in Neuseeland. Nach Industrietätigkeit als Forschungsleiterin hat sie seit 2009 eine Vertretungsprofessur für Nanotechnologie und Tox ... mehr

Mehr über Uni Ulm