Meine Merkliste
my.chemie.de  
Login  

Licht-induzierte Supraleitung unter hohem Druck

14.05.2018

© Jörg Harms / MPSD

Licht-induzierte Supraleitung in K3C60 wurde unter hohem Druck in einer Diamant-Ambosszelle untersucht.

Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben die licht-induzierte Supraleitung im Alkali-dotierten Fullerid K3C60 unter hohem, extern angelegtem Druck untersucht. Auf der einen Seite erlaubt diese Studie, die Natur des transienten Zustandes eindeutig als supraleitende Phase zu bestimmen. Darüber hinaus enthüllt sie die Möglichkeit, Supraleitung in K3C60 bei Temperaturen weit oberhalb der zuvor hypothesierten -170°C, sogar bis hinauf zur Zimmertemperatur, zu induzieren.

Im Gegensatz zu gewöhnlichen Metallen besitzen Supraleiter die einzigartige Fähigkeit, elektrischen Strom ohne jegliche Verluste zu leiten. Technologische Anwendungen sind heutzutage jedoch durch ihre tiefen Arbeitstemperaturen, die im besten Falle -70°C sein können, eingeschränkt. Wissenschaftler der Arbeitsgruppe von Professor Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg haben in der Vergangenheit mehrfach intensive Laserpulse genutzt um verschiedene Klassen von Supraleitern zu stimulieren. Unter bestimmten Bedingungen erbrachten sie dabei Beweise für Supraleitung bei ungewöhnlich hohen Temperaturen, obwohl dieser Zustand stets nur für den Bruchteil von Sekunden kurzlebig war.

Ein wichtiges Beispiel für diesen Effekt ist K3C60, ein aus schwach wechselwirkenden C60-„Fußbällen“ gebildeter organischer Molekülkristall, der im Gleichgewicht unterhalb der Sprungtemperatur von -250°C supraleitend ist. Im Jahr 2016 entdeckten Mitrano und Mitarbeiter am MPSD, dass maßgeschneiderte Laserpulse, die Schwingungen der C60-Moleküle anregen, einen kurzlebigen Zustand hoher Leitfähigkeit mit Eigenschaften gleich denen eines Supraleiters induzieren, und zwar bis hinauf zu Temperaturen von -170°C - weit oberhalb der Gleichgewichts-Sprungtemperatur.

In der jüngsten Studie gingen A. Cantaluppi und M. Buzzi am MPSD in Hamburg einen entscheidenden Schritt weiter und betrachteten den licht-induzierten Zustand in K3C60, während mechanischer Druck unter Verwendung einer Diamant-Ambosszelle angelegt wurde. Im Gleichgewicht sorgt dieser Druck für eine Reduzierung der Abstände der C60 Moleküle, wodurch der supraleitende Zustand des Kalium-dotierten Fullerids geschwächt und die kritische Temperatur deutlich gesenkt wird. „Zu verstehen, ob in K3C60 der licht-induzierte Zustand in gleicher Form reagiert wie der Gleichgewichts-Supraleiter ist ein entscheidender Schritt, um eindeutig die Natur dieses Zustandes zu bestimmen und kann neue Hinweise zum physikalischen Mechanismus hinter der licht-induzierten Hochtemperatur-Supraleitung liefern“, sagt Alice Cantaluppi.

Der licht-angeregte K3C60 Fullerid wurde systematisch untersucht, und zwar in einer Spanne vom umgebenden Normaldruck bis zu 2.5 GPa, was dem 25.000-fachen des Atmosphärendrucks entspricht. Die Autoren beobachteten eine starke Reduzierung der Photo-Leitfähigkeit mit zunehmendem Druck. Dieses Verhalten ist sehr verschieden von dem eines gewöhnlichen Metalls, aber im Einklang mit der Phänomenologie eines Supraleiters und steht daher für die erste eindeutige Interpretation des licht-induzierten Zustands in K3C60 als transiente supraleitende Phase. „Erwähnenswert“, sagt Michele Buzzi, „beobachteten wir, dass wir bei stärkerer optischer Anregung einen transienten Supraleiter auch bei Temperaturen weit oberhalb der zuvor bestimmten -170°C erreichten, sogar bis hinauf zur Zimmertemperatur.“

Eine universelle Beschreibung des physikalischen Mechanismus hinter dem Phänomen der licht-induzierten Hochtemperatur-Supraleitung in K3C60 fehlt jedoch noch, und das ultimative Ziel der Erreichung eines stabilen Zimmertemperatur-Supraleiters ist noch immer nicht an der nächsten Ecke zu finden. Nichtsdestotrotz soll der neuartige Ansatz des MPSD Teams, der die optische Anregung mit der Anwendung anderer externer Stimuli wie zum Beispiel mechanischen Drucks oder magnetischer Felder, vereint, den Weg in diese Richtung ebnen, um die Bereitstellung, die Kontrolle und das Verständnis neuer Phänomene in komplexen Materialien zu ermöglichen.

Originalveröffentlichung:

A. Cantaluppi, M. Buzzi, G. Jotzu, D. Nicoletti, M. Mitrano, D. Pontiroli, M. Riccò, A. Perucchi, P. Di Pietro & A. Cavalleri; "Pressure tuning of light-induced superconductivity in K3C60"; Nature Physics (2018)

Fakten, Hintergründe, Dossiers
  • Hochtemperatursupraleitung
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Deutsch-japanische Kooperation will Antworten auf fundamentale Fragen der Physik finden

    Mit einer feierlichen Zeremonie in Tokio ging am 8. April eine Forschungskooperation an den Start, die sich fundamentalen Fragen der Physik widmen wird. Die Partner sind das japanische Forschungsinstitut RIKEN, zwei Max-Planck-Institute und die PTB. Die drei Partner finanzieren das auf 5 Ja ... mehr

    Tröpfchen für Tröpfchen kosmische Chemie simulieren

    Zwei Astronomen des Max-Planck-Instituts für Astronomie und der Universität Jena haben eine elegante neue Methode entwickelt, die es erlaubt, die Energie einfacher chemischer Reaktionen unter ähnlichen Bedingungen zu messen wie bei Atomen und Molekülen im frühen Sonnensystem. Die neue Techn ... mehr

    Wenn ein Molekül Photonen sortiert

    Fluoreszierende organische Moleküle sind allgemein als Pigmente bekannt oder finden in der Fluoreszenzmikroskopie in vielen Bereichen der Biologie Anwendung. Obwohl sie, wie jedes andere Molekül, quantenmechanische Objekte sind, die aus einer kleinen Zahl von Atomen bestehen, werden organis ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.