28.05.2018 - Ruhr-Universität Bochum

Warum Bioelektroden für die Energieumwandlung nicht stabil sind

Wie künstliche Fotosynthese-Systeme konzipiert sein müssten, um auf lange Sicht funktionstüchtig zu bleiben

Forscher der Ruhr-Universität Bochum haben herausgefunden, warum Bioelektroden, die den Proteinkomplex aus der Fotosynthese Photosystem I, enthalten, nicht langfristig stabil sind. Solche Elektroden könnten nützlich sein, um Lichtenergie umweltschonend in chemische Energie umzuwandeln. Doch die in der Natur stabilen Proteine sind in halbkünstlichen Systemen auf Dauer nicht funktionstüchtig, weil sich reaktive Moleküle bilden, die das Photosystem I schädigen.

Das Team um Dr. Fangyuan Zhao, Dr. Felipe Conzuelo und Prof. Dr. Wolfgang Schuhmann vom Zentrum für Elektrochemie zusammen mit Kollegen des Bochumer Lehrstuhls für Biochemie der Pflanzen beschreibt die Ergebnisse in der Zeitschrift Nature Communications.

Vielversprechende Technik: Bioelektroden

„Die Gesellschaft steht vor der großen Herausforderung, nachhaltigere Wege für die Energieumwandlung und -speicherung finden zu müssen“, beschreibt Felipe Conzuelo den Hintergrund des Forschungsprojekts. Dabei sei es wichtig, die Prozesse zu verstehen, die aktuell noch die Lebenszeit von vielversprechenden Techniken limitierten. „Denn nur so können künftig stabile Lösungen entwickelt werden“, fügt Fangyuan Zhao hinzu.

Zu den erfolgversprechenden Techniken zählen Elektroden, bei denen das Photosystem I in ein Osmium-haltiges Polymer eingebettet ist. Wird das Fotosynthese-Protein durch Licht aktiviert, kann es sehr effizient positive und negative Ladungen voneinander trennen. Dieser Ladungsgradient kann als Energiequelle dienen, um weitere Prozesse anzutreiben.

Reaktive Sauerstoffspezies limitieren die Lebenszeit

„Das Photosystem I arbeitet nicht nur effizient, sondern kommt in der Natur auch in großen Mengen vor – das macht es interessant für halbkünstliche Systeme für die Energieumwandlung“, erklärt Felipe Conzuelo. Arbeitet die Bioelektrode jedoch in einer sauerstoffhaltigen Umgebung, nimmt sie langfristig dadurch Schaden.

Die Bochumer Wissenschaftler nutzten die sogenannte elektrochemische Rastermikroskopie, um die Vorgänge an der Elektrodenoberfläche zu verfolgen. An dieser ist das Photosystem I in ein Osmium-haltiges Polymer eingebettet. Sie beobachteten, welche Moleküle sich an der Elektrodenoberfläche bilden, wenn diese mit Licht beschienen wird. Dazu setzten sie das System verschiedenen Sauerstoffkonzentrationen aus.

Es zeigte sich, dass die Bestrahlung mit Licht reaktive Sauerstoffspezies sowie Wasserstoffperoxid entstehen ließ, die das Photosystem I auf Dauer schädigen können. „Basierend auf unseren Ergebnissen scheint es empfehlenswert, Bioelektroden mit Photosystem I so zu designen, dass sie in einer sauerstofffreien Umgebung operieren können“, resümiert Conzuelo.

  • Fangyuan Zhao, Steffen Hardt, Volker Hartmann, Huijie Zhang, Marc M. Nowaczyk, Matthias Rögner, Nicolas Plumeré, Wolfgang Schuhmann, Felipe Conzuelo; "Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes"; Nature Communications; 2018
Fakten, Hintergründe, Dossiers
  • künstliche Photosynthese
  • Photosynthese
Mehr über RUB
  • News

    Würfel stechen Kugeln als Katalysatorpartikel aus

    Bisher war es mit Nanopartikeln als Katalysatoren für grünen Wasserstoff wie mit Ruderern in einem Achter: Man konnte nur die durchschnittliche Leistung messen, nicht aber herausfinden, wer der Beste ist. Eine neue Methode, die die Gruppe um Prof. Dr. Kristina Tschulik, Leiterin des Lehrstu ... mehr

    Neues Syntheseverfahren für die nachhaltige Nutzung kleiner Moleküle

    Das Bochumer Reaktionsprinzip kommt ohne teure und gifte Metalle aus. Zudem lässt sich damit eine chemische Verbindung erzeugen und weiterverarbeiten, die bislang nur als flüchtiger Übergangszustand bekannt war. Forschende der Ruhr-Universität Bochum haben einen neuen Syntheseweg gefunden, ... mehr

    Ein Gift hilft Wasserstoff produzierende Biokatalysatoren zu verstehen

    In der Natur sind bestimmte Enzyme, sogenannte Hydrogenasen, in der Lage, molekularen Wasserstoff (H2) zu produzieren. Spezielle Arten dieser Biokatalysatoren, sogenannte [FeFe]-Hydrogenasen, sind äußerst effizient und daher für die biobasierte Wasserstoffherstellung von Interesse. Obwohl d ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr