Meine Merkliste
my.chemie.de  
Login  

Die Kraft des Vakuums

Wissenschaftler eröffnen neue Möglichkeiten des Material-Designs

07.12.2018

© Jörg M. Harms / MPSD

Die Vakuum-Fluktuationen des Lichts (gelbe Welle) werden in einem optischen Hohlraum (reflektierende Spiegel oben und unten) verstärkt. Die Schwingungen des Kristallgitters (rote Atome) an einer zweidimensionalen Grenzfläche surfen auf dieser starken Lichtwelle. Die so vermischten Licht-Gitterschwingungswellen koppeln besonders stark an Elektronen in einem zweidimensionalen atomar dünnen Material (grüne und gelbe Atome) und verändern so dessen Eigenschaften.

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt. Dies könnte die Entwicklung neuer Supraleiter für energiesparende Geräte und viele andere technische Anwendungen ermöglichen.

Das Vakuum ist nicht leer. Was für Laien wie Zauberei klingt, beschäftigt Physiker seit der Entwicklung der Quantenmechanik. Das scheinbare Nichts brodelt unablässig und erzeugt selbst am absoluten Temperatur-Nullpunkt andauernd Lichtfluktuationen. Diese virtuellen Photonen warten gewissermaßen darauf, gebraucht zu werden. Sie können Kräfte vermitteln und Eigenschaften von Materie verändern.

Die Vakuum-Kraft ist beispielsweise dafür bekannt, den Casimir-Effekt zu erzeugen. Bringt man zwei parallele metallische Platten eines Kondensators sehr nah zusammen, dann kann man eine mikroskopisch kleine Anziehungskraft zwischen ihnen messen, selbst wenn die Platten nicht elektrisch aufgeladen sind. Diese Kraft entsteht, indem die beiden Platten virtuelle Photonen austauschen. Das kann man sich vorstellen wie zwei Eisläufer, die sich einen Ball hin und her werfen und durch den Rückstoß voneinander abgestoßen werden. Wenn man den Ball nicht sehen würde, könnte man denken, dass eine abstoßende Kraft zwischen den Eisläufern wirkt.

Das MPSD-Team um Michael Sentef, Michael Ruggenthaler und Angel Rubio hat nun eine Arbeit in Science Advances veröffentlicht, die die Vakuum-Kraft mit modernsten Materialien in Verbindung bringt. Speziell beschäftigten sie sich mit der Frage, was passiert, wenn man den zweidimensionalen Hochtemperatur-Supraleiter Eisenselenid (FeSe) auf einem Substrat von SrTiO3 zwischen zwei parallele metallische Platten bringt, zwischen denen die virtuellen Photonen hin- und herfliegen. Das Resultat der Überlegungen und Simulationen: Man kann die Kraft des Vakuums nutzen, um die schnellen Elektronen in der 2D-Ebene stärker an die senkrecht dazu schwingenden Gittervibrationen des Substrats zu koppeln. Die Kopplung zwischen supraleitenden Elektronen und den Schwingungen des Kristallgitters (Phononen) ist ein zentraler Baustein der besonderen Eigenschaften vieler Materialien.

„Wir sind erst am Anfang unserer Verständnisses dieser Prozesse“, sagt Michael Sentef. „Beispielsweise wissen wir gar nicht so genau, wie stark der Einfluss des Vakuum-Lichts auf die Schwingungen an der Oberfläche in der Realität wäre. Wir reden hier von Quasiteilchen aus Licht und Phononen, den Phonon-Polaritonen.“ In 3D-Isolatoren wurden Phonon-Polaritonen mit Lasern schon vor Jahrzehnten gemessen. Für die komplexen neuen 2D-Quantenmaterialien ist dies jedoch alles Neuland. „Wir hoffen natürlich, dass wir durch unsere Arbeit die experimentellen Kollegen dazu anregen, unsere Vorhersagen zu überprüfen“, ergänzt Sentef.

MPSD-Theorie-Direktor Angel Rubio ist begeistert von den neuen Möglichkeiten: „Die Theorien und numerischen Simulationen in unserer Abteilung sind ein grundlegender Baustein für eine ganz neue Generation an technischen Entwicklungen. Noch viel wichtiger ist, dass Forscher dadurch ganz neu über alte Probleme der Wechselwirkung zwischen Licht und Struktur der Materie nachdenken.“ Rubio ist sehr optimistisch, was die Grundlagenforschung in diesem Bereich angeht. „Zusammen mit den experimentellen Fortschritten, etwa der kontrollierten Herstellung und präzisen Messung atomarer Strukturen und deren elektronischer Eigenschaften, können wir auf große Entdeckungen hoffen.“

Seiner Meinung nach stünden die Forscher erst am Anfang eines neuen Zeitalters im atomaren Design von Funktionalitäten in chemischen Verbindungen, besonders in 2D-Materialien und komplexen Molekülen. Und Rubio ist überzeugt: „Die Kraft des Vakuums hilft uns dabei.“

Fakten, Hintergründe, Dossiers
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Wie Graphen-Nanoteilchen die Auflösung von Mikroskopen verbessern

    Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materia ... mehr

    Präzise Schadstoffermittlung aus dem All

    Stickoxide (NO und NO2) tragen wesentlich zur Luftverschmutzung bei. Um die Luftqualität möglichst gut vorherzusagen und Strategien zur Reduktion der Verschmutzung zu entwickeln, sind präzise Emissionsdaten notwendig. Dazu helfen unter anderem tägliche Satellitenmessungen. Das Messgerät bli ... mehr

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.