22.03.2019 - Ludwig-Maximilians-Universität München (LMU)

Ein Transistor für alle Fälle

Organische Halbleiter

Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert.

Transistoren sind Halbleiter-Bauelemente, die in elektrischen Schaltungen Spannungen und Ströme steuern. Im gleichen Maße wie viele elektrische Geräte immer leistungsfähiger und gleichzeitig kleiner werden, gilt dies auch für Transistoren. Bei anorganischen Bauelementen sind Abmessungen unter 100 Nanometer bereits Standard.

Organische Halbleiter können hier noch nicht mithalten, denn ihre Leistung bezüglich des Ladungstransports ist deutlich geringer. Doch ihre Strukturen bieten andere Vorteile. Sie lassen sich großindustriell drucken, die Materialkosten sind niedrig und sie können transparent auf flexible Oberflächen wie Folien aufgebracht werden. Daher arbeiten Thomas Weitz, Professor für Physik an der LMU und Mitglied in der Nanosystems Initiative Munich, und seine Gruppe an der Optimierung der organischen Transistoren. In ihrer aktuellen Publikation in Nature Nanotechnology präsentieren sie Transistoren, die durch ihren ungewöhnlichen Aufbau sehr klein, leistungsstark und anpassungsfähig sind. Über wenige Parameter lässt sich beispielsweise bei der Herstellung steuern, ob der Halbleiter für hohe oder niedrige Stromdichten optimiert sein soll. Das Besondere ist eine untypische Geometrie, die es zudem erlaubt, die nanoskopisch kleinen Transistoren leichter herzustellen.

„Unser Ziel war es, Bauteile zu entwickeln, die zwei Aufgaben kombinieren“, sagt Thomas Weitz „Einerseits die Fähigkeit, bei hohen Strömen als klassische Transistoren zu fungieren, und andererseits bei Niedrigstrom arbeiten zu können.“ Potenzielle Einsatzgebiete sind organische LEDs oder Sensoren, denn hier werden niedrige Spannungen, hohe Ströme oder große Transkonduktanzen benötigt. Besonders interessant könnte die Verwendung in sogenannten memristiven Elementen sein. „Man kann sich einen Memristor als ein Element vorstellen, das sich beim Verarbeiten elektrischer Signale wie ein Netzwerk von Neuronen verhält und seine Eigenschaften abhängig von dem Zustand, in dem es sich befindet, verändert“, erklärt Weitz. „Durch das genaue Anpassen der Geometrie unserer memristiven Elemente können diese für verschiedene Anwendungen wie beispielsweise Lernprozesse in künstlichen Synapsen eingesetzt werden.“

Die Forscher haben ihren Transistor bereits zum Patent angemeldet, damit er für die industrielle Anwendung weiterentwickelt werden kann.

Fakten, Hintergründe, Dossiers
  • Transistoren
  • organische Halbleiter
Mehr über LMU
  • News

    Batterieforschung: Die Mischung macht´s

    In der Batterie der Zukunft werden Feststoffe die bisherigen Elektrolyt-Lösungen ersetzen. Eine Reihe neuer Natriumionenleiter hat jetzt ein LMU-Team entwickelt. Das Geheimnis des besten Materials der Reihe steckt in der genauen Mischung der Zutaten. Die Tage der konventionellen Lithiumione ... mehr

    Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

    LMU-Forschern ist es gelungen, die Bewegung eines lichtgetriebenen molekularen Motors auf eine andere molekulare Einheit zu übertragen – eine wichtige Voraussetzung für den Einsatz solcher Motoren in Nanomaschinen. Lichtgetriebene molekulare Motoren, die gezielte Drehbewegungen ausführen, h ... mehr

    Mensch gegen Maschine: Kann KI Wissenschaft betreiben?

    In den letzten Jahrzehnten hat das maschinelle Lernen viele Bereiche der Gesellschaft revolutioniert: Maschinen lernen, Autos zu fahren, Tumore zu erkennen und Schach zu spielen - und übertreffen dabei oft ihre menschlichen Gegenstücke. Nun hat ein Team von Wissenschaftlern des Okinawa Inst ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr