Meine Merkliste
my.chemie.de  
Login  

Edelmetall-Katalysatoren sparsam auftragen

Neue Methode könnte Material sparen

17.05.2019

© RUB, Marquard

Kristina Tschulik und Mathies Evers entwickeln Methoden, um seltene und teure Edelmetall-Partikel möglichst ressourcenschonend als Katalysatoren nutzen zu können.

Edelmetall-Nanopartikel aus Platin oder Gold sind hervorragende Katalysatoren. Aber sie sind teuer und selten. Mit dieser neuen Methode könnte Material gespart werden.

Eine neue Methode, um seltene und teure Katalysatoren möglichst sparsam verwenden zu können, haben Forscher der Ruhr-Universität Bochum und des Fritz-Haber-Instituts Berlin entwickelt. Sie schlossen ein Edelmetallsalz in winzige Mizellen, also äußere Hüllen, ein und ließen diese auf einer Kohlenstoffelektrode einschlagen, wodurch die Oberfläche mit Nanopartikeln des enthaltenen Edelmetalls Gold beschichtet wurde. Gleichzeitig konnte das Team genau analysieren, wie viel des Metalls abgeschieden wurde. Anschließend zeigten die Wissenschaftler, dass die so beschichtete Elektrode effizient die Sauerstoffreduktion katalysieren konnte, welche der limitierende chemische Prozess in Brennstoffzellen ist.

Partikel von gleicher Größe herstellen

Die Gold-Nanopartikel stellte die Forschungsgruppe mithilfe von Mizellen her. Zunächst bestanden die Partikel aus einem Vorläufermaterial, nämlich Chlorgoldsäure, die in eine äußere Hülle aus einem Polymer eingepackt war. Der Vorteil: „Wenn wir Gold-Nanopartikel mithilfe von Mizellen herstellen, haben die Nanopartikel alle eine nahezu identische Größe“, sagt Kristina Tschulik, die Mitglied im Exzellenzcluster „Ruhr Explores Solvation“, kurz Resolv, ist. Denn in die kleinen Mizellen passt nur eine bestimme Beladung des Vorläufermaterials, aus dem ein einzelnes Partikel mit einer bestimmten Größe entsteht. „Da unterschiedlich große Partikel unterschiedliche katalytische Eigenschaften besitzen, ist es wichtig, die Partikelgröße über die Beladungsmenge der Mizelle zu kontrollieren“, ergänzt Tschulik.

Gleichmäßige Beschichtung auch bei komplexen Oberflächen

Die zu beschichtende zylinderförmige Elektrode tauchten die Wissenschaftler in eine Lösung mit den beladenen Mizellen ein und legten eine Spannung an der Elektrode an. Durch die zufällige Bewegung der Mizellen in der Lösung schlugen sie im Lauf der Zeit auf der Elektrodenoberfläche ein. Dort platzte die äußere Hülle auf und die Gold-Ionen aus der Chlorgoldsäure reagierten zu elementarem Gold, welches an der Elektrodenoberfläche haften blieb. Und zwar in Form einer gleichförmigen Schicht aus Nanopartikeln. „Mit Standardmethoden lassen sich nur flache Substrate gleichmäßig beschichten“, erklärt Tschulik. „Mit unserem Verfahren können auch komplexe Oberflächen gleichmäßig mit einem Katalysator beladen werden.“

Abgeschiedene Menge genau kontrollierbar

Während die Gold-Ionen aus der Chlorgoldsäure zu elementarem Gold reagieren, fließen Elektronen. Den so entstehenden Stromfluss können die Chemikerinnen und Chemiker messen und daraus genau ableiten, wie viel Material beim Beschichten der Elektrode verbraucht wurde. Das Verfahren registriert dabei den Einschlag jedes einzelnen Partikels und auch dessen Größe.

Die mit dem neuen Verfahren beschichteten Elektroden testeten die Wissenschaftler erfolgreich für die Sauerstoffreduktionsreaktion. Sie erzielten dabei eine ebenso hohe Aktivität wie für nackte Goldnanopartikel, die ohne äußere Hülle aufgetragen wurden. Aufgrund der gleichmäßigen Beschichtung der Oberfläche beobachteten sie zudem schon bei elf Prozent Bedeckung eine fast ebenso hohe Reaktionsrate wie für vollständig mit Gold bedeckte Elektroden und massive Goldelektroden.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Warum es künstliche Intelligenz eigentlich noch nicht gibt

    Die Prozesse, die der künstlichen Intelligenz heute zugrunde liegen, sind eigentlich dumm. Bochumer Forscher arbeiten daran, sie schlauer zu machen. Umbruch, Revolution, Megatrend, vielleicht auch Gefahr: Das Thema künstliche Intelligenz durchdringt alle Branchen, beschäftigt sämtliche Medi ... mehr

    Wie man Biokatalysatoren unsterblich macht

    Sauerstoff bedroht nachhaltige Katalysatoren, die Wasserstoff in Brennstoffzellen umwandeln. Forscher aus Bochum und Marseille haben ein Mittel dagegen entwickelt. Effiziente Katalysatoren für die Umwandlung von Wasserstoff in Brennstoffzellen und andere Stoffe für die Energiewende basieren ... mehr

    Aktivität von edelmetallfreien Katalysatorpartikeln bestimmen

    Edelmetallfreie Nanopartikel könnten als Katalysatoren für die Wasserstoffgewinnung aus Wasser taugen. Weil sie so klein sind, sind ihre Eigenschaften schwer zu bestimmen. Chemiker haben ein neues Verfahren entwickelt, mit dem sie einzelne edelmetallfreie Nanopartikel-Katalysatoren charakte ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.