Meine Merkliste
my.chemie.de  
Login  

Wie man Nanoteilchen nach ihrer 'Form' trennen kann

Neue Strategie zum Trennen von Molekülen

13.06.2019

Pexels, pixabay.com, CC0

Symbolbild

In unserem täglichen Leben sind Zweck und Funktion eines Gegenstandes entweder durch dessen Material bestimmt oder durch dessen Form. Ein Regenmantel ist aus wasserabweisenden Stoffen hergestellt, ein Rad immer rund, damit es rollen kann. Aber wie sieht das bei den kleinsten Teilchen aus? Während der Einfluss des Materials auf Nanoebene bereits detailliert untersucht wurde, gab es bisher keine verlässliche Trennmethode für Moleküle von unterschiedlicher 'Form'. Wissenschafter der Universität Wien und der International School for Advanced Studies in Triest konnten dieses Rätsel nun lösen.

Die Forscher haben eine Strategie entwickelt wie man geknotete Ringpolymere von ungeknoteten trennen kann. Polymere sind lange Moleküle, die aus wenigen sich immer wieder wiederholenden Bausteinen, sogenannten Monomer, aufgebaut sind. Die Gruppe um Lisa Weiß und Christos Likos von der Universität Wien und Cristian Micheletti und Mattia Marenda von der International School for Advanced Studies (SISSA) beschäftigte sich mit dem Einfluss von Topologie, welches der mathematisch exakte Begriff für Form und Konnektivität ist, auf Polymere und wie man sie voneinander trennen kann. Verschiedene Topologien in der Polymerwissenschaft sind etwa der Unknoten, den man sich als geschlossene, unverknotete Perlenkette vorstellen kann, bei der jede Perle einem Monomer entspricht, oder verschiedenartig geknotete Strukturen, welche dem Bild von beliebig geknoteten, ebenfalls geschlossenen Perlenketten entsprechen. 

Der Schlüssel zur Trennung dieser Formen sind modulierte Nanokanäle mit einem kleinen Durchmesser, der periodisch entlang der Länge des Kanals zu- und abnimmt. Auf solchen Längen- und Zeitskalen ist die thermische Bewegung, auch als Brownsche Molekularbewegung bekannt, nicht zu vernachlässigen. Diese chaotische Bewegung verursacht die Diffusion der Polymere, worunter man die Deplatzierung des Moleküls durch zufällige Bewegung versteht.

Ohne Fluss kehrt ein modulierter Kanal die Rangliste der Diffusion im Vergleich zum System, das nicht durch Wände beschränkt wird, um, so dass die am schnellsten diffundierende Spezies nun die langsamste ist. Weil die Diffusion chaotisch ist und dazu tendiert, alles zu vermischen, kann diese leider nicht zum Trennen der Polymere verwendet werden. Deshalb haben die Forscher schwache Flüsse mittels besonderer Simulationstechniken angewandt, welche die durch das Lösungsmittel übertragenen Impulse korrekt reproduziert. Im Falle von sehr schwachen Flüssen, können die Forscher tatsächlich verschieden geknotete Polymere voneinander trennen.

Dieser Mechanismus basiert darauf, dass die mittlere Transportgeschwindigkeit auf Grund des Flusses immer noch kleiner ist als die zufällige thermische Bewegung. Dadurch haben Polymere genügend Zeit, die Querschnittsfläche des Kanals zu erkunden, bevor sie in die nächste Kammer transportiert werden. Solange diese Bedingung erfüllt ist, können unterschiedliche Knoten bis zu einem Faktor 10 schneller transportiert werden, wodurch eine zuverlässige Trennung sichergestellt ist. Interessanterweise ist das Verhältnis von Knotengröße zu Verengung kein limitierendes Kriterium für die Trennung. Nichtsdestotrotz, kann dieses Verhältnis benutzt werden, um zu kontrollieren ob ein Polymer zuerst mit dem geknoteten Teil in eine neue Kammer transportiert wird, oder ob der Knoten hinterher gezogen wird.

Die Kollaboration im Rahmen des Marie-Curie Forschungsnetzwerks Nanotrans ermöglichte, das Wissen über Hydrodynamik in Wien mit der Knoten-Expertise in Triest zu vereinigen. Dieser Mechanismus basiert darauf, dass die mittlere Transportgeschwindigkeit auf Grund des Flusses immer noch kleiner ist als die zufällige thermische Bewegung. Dadurch haben Polymer genügend Zeit die Querschnittsfläche des Kanals zu erkunden, bevor sie in die nächste Kammer transportiert werden. Solange diese Bedingung erfüllt ist, können unterschiedliche Knoten bis zu einem Faktor 10 unterschiedlich schnell transportiert werden, wodurch eine zuverlässige Trennung sicher gestellt ist. Interessanterweise ist das Verhältnis von Knotengröße zu Verengung kein limitierendes Kriterium. Nichtsdestotrotz, kann dieses Verhältnis benutzt werden, um zu kontrollieren ob ein Polymer zuerst mit dem geknoteten Teil in eine neue Kammer transportiert wird, oder ob der Knoten hinterher gezogen wird.

Fakten, Hintergründe, Dossiers
  • Trennverfahren
  • Nanoteilchen
  • Moleküle
Mehr über Universität Wien
  • News

    Atom-Manipulationen spielerisch entdecken

    Mithilfe eines hochmodernen Elektronenmikroskops kann das Team um Toma Susi an der Universität Wien stark gebundene Materialien Atom für Atom genau manipulieren. Die Messinstrumente des UltraSTEM sind vollständig computergesteuert, so dass eine Simulation die Arbeitsweise der Forscher reali ... mehr

    Atomare Bewegungen "on-the-fly" erfasst durch maschinelles Lernen

    Auf atomarer Ebene können Materialien eine reiche Palette an dynamischem Verhalten zeigen, das sich direkt auf ihre physikalischen Eigenschaften auswirkt. Seit vielen Jahren versuchen Wissenschafter diese Dynamik in komplexen Materialien bei verschiedenen Temperaturen zu beschreiben. Physik ... mehr

    Wenn Elektronen mittanzen dürfen

    Ionische Flüssigkeiten haben besondere Eigenschaften, die sie für viele Anwendungen interessant machen. Je nach Kombination von Anionen und Kationen können die flüssigen Salze z.B. sehr wasser(un)löslich, leitfähig oder temperaturstabil sein. Polarisierbare molekulardynamische Simulationen ... mehr

  • Videos

    Wenn Chemiker mit Molekülen spielen

    Nuno Maulide und Leticia González von der Uni Wien haben eine neue Reaktion entwickelt, um sogenannte Heterozyklen billiger und umweltfreundlicher herzustellen. mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr

Mehr über SISSA
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.