Meine Merkliste
my.chemie.de  
Login  

Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

18.09.2019

HZDR / Juniks

Der magnetokalorische Effekt: In ein Magnetfeld gebracht, ändert sich die Temperatur bestimmter Materialien deutlich. Diesen Effekt wollen Wissenschaftler nutzen, um umweltfreundlichere Kühlgeräte zu bauen.

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen. Die zunehmende Durchdringung unseres Alltags mit Kühlanwendungen hat einen stetig wachsenden ökologischen Fußabdruck zur Folge. Neue Verfahren wie die magnetische Kühlung könnten diese Belastung für Klima und Umwelt minimieren. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der TU Darmstadt haben die dafür heute in Frage kommenden Materialien näher auf ihre Eignung untersucht. Ergebnis ihrer Arbeit ist eine erste systematische Materialbibliothek mit wichtigen Kenngrößen, die sie jetzt in der Fachzeitschrift Advanced Energy Materials veröffentlicht haben.

Die Erzeugung künstlicher Kälte mittels konventioneller Gaskompression steht seit rund hundert Jahren für Haushaltsanwendungen zur Verfügung. Die Technologie hat sich in dieser Zeit jedoch kaum verändert. Nach Schätzungen von Experten sind heute circa eine Milliarde darauf basierender Kühlschränke weltweit im Einsatz, Tendenz zunehmend. „Die Kühltechnik gilt mittlerweile als größter Stromverbraucher in den eigenen vier Wänden. Ebenso problematisch ist die Umweltbelastung, die die eingesetzten Kühlmittel mit sich bringen“, beschreibt Dr. Tino Gottschall seine Motivation. Er forscht am Hochfeld-Magnetlabor Dresden des HZDR an Materialien für magnetische Kühlprozesse.

Zum Herzstück künftiger Kühltechnologien könnte der „magnetokalorische Effekt“ werden: Bestimmte Metalle und Legierungen ändern schlagartig ihre Temperatur, wenn sie einem Magnetfeld ausgesetzt werden. Aus der Forschung ist bereits eine ganze Reihe solcher magnetokalorischer Substanzen bekannt. „Ob sie sich auch für massenhaft verbreitete Haushaltsanwendungen empfehlen, ist jedoch eine andere Frage“, fügt Prof. Oliver Gutfleisch vom Institut für Materialwissenschaften der TU Darmstadt hinzu.

Stoffdatenbank für Kühlmaterialien

Zu ihrer Klärung trugen die Wissenschaftler Daten zu Stoffeigenschaften zusammen. Jedoch stießen sie dabei schnell auf Schwierigkeiten. „Besonders überrascht waren wir, dass überhaupt nur wenige Ergebnisse aus direkten Messungen in der Fachliteratur zu finden sind“, berichtet Tino Gottschall. „Meistens wurden diese Kenngrößen lediglich indirekt aus der beobachteten Magnetisierung berechnet. Wir stellten dabei fest, dass die Messbedingungen wie die Stärke und das Profil des angelegten Magnetfelds bis hin zum Messregime nicht miteinander vergleichbar sind – und damit auch nicht die erzielten Ergebnisse.“

Um diese Unstimmigkeiten bei den bisher publizierten Stoffparametern auszuräumen, legten die Forscher ein aufwändiges Messprogramm auf, das die ganze Bandbreite der derzeitig aussichtsreichsten magnetokalorischen Werkstoffe und deren relevante Materialeigenschaften abdeckt. Durch die Kopplung von hochgenauen Messungen und thermodynamischen Betrachtungen konnten die Wissenschaftler aus Dresden und Darmstadt in sich konsistente Stoffdatensätze generieren. Sie präsentieren mit ihrer Arbeit nun einen soliden Grundstock an Daten, der die Auswahl zweckmäßiger Materialien für unterschiedliche Anwendungen zur magnetischen Kühlung erleichtern kann.

Welches Material kann es mit Gadolinium aufnehmen?

Die Eignung eines Materials für die magnetische Kühlung wird letztendlich durch verschiedene Kenngrößen bestimmt. Nur bei einer passenden Kombination dieser Parameter kann das Material mit der bewährten Haushaltskühltechnik konkurrieren. „Die erzielte Temperaturänderung bei Raumtemperatur sollte groß sein und sich gleichzeitig möglichst viel Wärme abführen lassen“, benennt Gottschall die hervorstechendsten Eigenschaften der gesuchten Kühlmaterialien von morgen.

Für einen Einsatz in zukünftigen Massenanwendungen dürfen die Substanzen außerdem keine schädlichen Eigenschaften für Umwelt und Gesundheit mitbringen. „Sie sollten zudem nicht aus Rohstoffen bestehen, die aufgrund ihrer begrenzten Vorkommen und schweren Ersetzbarkeit in Anwendungen als kritisch eingestuft werden“, ergänzt Gutfleisch. „Dieser Gesichtspunkt kommt bei der Gesamtbewertung technologischer Prozesse oftmals noch zu kurz. Eine Fokussierung auf physikalische Parameter reicht heute nicht mehr aus. Insofern ist die magnetische Kühlung auch ein Paradebeispiel für die grundlegende Herausforderung der Energiewende, die ohne einen nachhaltigen Zugriff auf geeignete Materialien nicht umsetzbar sein wird.“

Bei Raumtemperatur heißt der magnetokalorische Maßstab noch Gadolinium. Wird das Seltenerd-Element in ein Magnetfeld von 1 Tesla gebracht, können die Wissenschaftler eine Temperaturänderung von fast 3 Grad Celsius messen. Die Stärke des für diesen Effekt anzulegenden Magnetfelds entspricht der von leistungsfähigen kommerziellen Dauermagneten, wie sie aus wirtschaftlichen Gründen auch in den neuen magnetokalorischen Kühlschränken zum Einsatz kommen sollen.

Geeignete Materialien: Ein Blick in die Zukunft

Trotz der herausragenden Eigenschaften gelten die Aussichten auf eine Verwendung von Gadolinium zu Kühlzwecken im Haushalt als nicht realistisch. Denn das Element zählt zu jenen Seltenerdmetallen, die langfristig als zu unsicher in der Beschaffung eingestuft werden. Bei gleicher Bauweise könnten Wärmeüberträger aus Eisen-Rhodium-Legierungen die größten Wärmemengen je Kühlzyklus abführen. Doch das Platingruppenmetall Rhodium gehört hinsichtlich der Versorgungssicherheit ebenfalls zu den von der Europäischen Kommission als kritisch eingestuften Rohstoffen.

Doch die Forscher fanden auch Kandidaten, deren Komponenten auf absehbare Zeit problemlos verfügbar und die gleichzeitig vielversprechend leistungsfähig sind: Intermetallische Verbindungen aus den Elementen Lanthan, Eisen, Mangan und Silizium etwa, bei denen Wasserstoff im Kristallgitter eingelagert wurde, können Gadolinium hinsichtlich der dem Kühlraum entziehbaren Wärme sogar übertreffen.

Weitere könnten schon bald folgen: Die Forscher vom HZDR und der TU Darmstadt arbeiten intensiv am Ausbau der Materialpalette für die magnetische Kühlung. In enger Zusammenarbeit bereiten Wissenschaftler beider Einrichtungen neue Versuchsreihen zu den Eigenschaften magnetokalorischer Substanzen vor. Am Hochfeld-Magnetlabor Dresden wollen sie beispielsweise untersuchen, wie sich diese Substanzen in gepulsten Magnetfeldern verhalten. Der breitere Fokus der zukünftigen Forschung liegt auf dem Verhalten der Materialien, wenn sie gleichzeitig verschiedenen Einflüssen wie Magnetfeldern, mechanischem Stress sowie Temperaturänderungen ausgesetzt sind. Parallel dazu arbeiten die Forscher an Demonstratoren, die die Effizienz der Magnetkühlung unter Beweis stellen sollen.

Fakten, Hintergründe, Dossiers
  • magnetische Kühlung
  • Kühlung
  • Kühltechnik
  • Gadolinium
Mehr über HZDR
  • News

    Laser für durchdringende Wellen

    Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten ... mehr

    Wie Urbakterien Uran & Co. ausbremsen

    Mikroorganismen, die natürlicherweise in Salzlagerstätten siedeln, wandeln Schwermetalle in unlösliche Minerale um. Am Beispiel von Uran und Curium konnten Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) zeigen, dass diese „Biomineralisation“ bei niedrigen Konzentrationen der toxi ... mehr

    Hülle macht Nanodrähte vielseitiger

    Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen. Vorausgesetzt, die winzigen Halbleiter wandeln elektrische Energie und Licht bei geeigneten Wellenlängen ineinander um. Einem Forscherteam am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) ist es gelun ... mehr

  • Forschungsinstitute

    Helmholtz-Zentrum Dresden-Rossendorf e. V.

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus: • Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig? • Wie können Krebserkrankungen besse ... mehr

Mehr über TU Darmstadt
  • News

    Sensoren aus bioinspirierten Nanoporen

    Mediziner und Umweltanalytiker wünschen sich Mikrochips, die Substanzen direkt vor Ort messen. Wissenschaftler der TU Darmstadt haben ein auf Nanoporen basiertes System mit breitem Potential entwickelt und patentiert. Wer heute Laborwerte zur Diagnostik einer Erkrankung oder deren Verlaufsk ... mehr

    Überraschendes vom „doppelt-magischen” Isotop Nickel-78

    Wissenschaftler des RIKEN Nishina Zentrums für Beschleuniger-basierte Forschung in Japan und ein internationales Kollaborationsnetzwerk, an dem die Technische Universität Darmstadt, die Universität Tokio und die französische Kommission für alternative Energien und Atomenergie beteiligt sind ... mehr

    Licht mit Wasser speichern

    Erneuerbare Energien haben einen entscheidenden Nachteil: Sie sind abhängig von den aktuellen Wetterbedingungen. Solarzellen produzieren Energie, wenn die Sonne scheint, und Windturbinen benötigen Wind, um sich zu drehen. Die Energie muss zwischengespeichert werden, damit sie den ganzen Tag ... mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.