02.12.2019 - Universität Konstanz

Direkte Kopplung zweier nahe beieinanderstehender Sensoren im Nanobereich

Der Nachbar schwingt mit

Sie sehen aus wie Zahnstocher, nur dass sie winzig klein sind: 10.000-mal kürzer und 1.000-mal dünner. Im Arbeitsbereich der Physikerin Prof. Dr. Eva Weig ist es an der Universität Konstanz gelungen, Nanosäulen so nah aneinander zu bauen, dass sie durch die Verspannung im Boden gekoppelt werden können und miteinander schwingen. Aufgrund dieser Technik sind ganze Felder solcher Resonatoren denkbar, die wiederum als Sensoren oder Taktgeber eingesetzt werden und in der Quantentechnologie Anwendung finden könnten. Die Beschreibung der Experimente ist im Open Access-Journal Nature Communications nachzulesen. 

Die Kopplung von nanomechanischen Resonatoren ist derzeit ein vielbeforschtes Gebiet, da diese in mancher Hinsicht im Kollektiv besser schwingen als allein. Im Gegensatz zu Konstruktionen, bei denen die Kopplung erst durch angelegte Felder aufgebaut werden muss, reicht es beim Resonatoren-Modell der Konstanzer Arbeitsgruppe für Nanomechanische Systeme, dass die Nanosäulen selbst gewisse Bedingungen erfüllen. Die wichtigste Bedingung ist, dass sie nahe genug nebeneinander auf dem Boden verankert sind. Wird eine Nanosäule in Schwingung versetzt, verspannt sich am Boden die Umgebung. Die Verspannung hat eine gewisse Reichweite, so dass die benachbarte Säule sie „spürt“ und sich mit bewegt. „Die Kopplung ist sogar ziemlich stark, wenn man die Säulen nah genug aneinanderstellt“, sagt Eva Weig.  

Vorteil: Große Säulenfelder sind leichter möglich

„Unser System hat den Vorteil, dass damit leicht große Felder mit vielen Säulen gebaut werden können“, sagt Doktorandin und Mitautorin Juliane Doster. Da die Schwingungsamplituden der Säulen so groß sind, dass sie sogar im Mikroskop sichtbar sind, wäre es möglich, direkt zu beobachten, was in solch einem Säulenfeld passiert. Die Arbeitsgruppe hat für ihre Nanosäulen den Halbleiter Galliumarsenid verwendet. Denkbar sind eigentlich alle Halbleiter. „Man muss nur wissen, wie man die Säulen aus dem Material herausätzen kann“, sagt Juliane Doster.

Perspektive: Gekoppelte Säulenfelder

In die Resonatorenfelder könnten obendrein zusätzliche Funktionen eingebaut werden. „Auch wenn unsere Säulen bislang noch nicht funktionalisiert sind, eröffnen unsere Ergebnisse die Perspektive, zukünftig ganze Netzwerke von solchen funktionalisierten Nanosäulen zu realisieren“, so Eva Weig. Zum Beispiel könnten damit mehrere Einzelphotonenquellen miteinander synchronisiert werden, was Anwendungen in der Quantentechnologie eröffnet. Eine weitere mögliche Anwendung käme sogar ohne Funktionalisierung aus: Gekoppelte Säulenfelder könnten möglicherweise auch dazu genutzt werden, akustische Signale verlustfrei in einer Art „Einbahnstraße für Schallwellen“ zu leiten.

Fakten, Hintergründe, Dossiers
Mehr über Uni Konstanz
  • News

    Neue Art von Magnetismus in Kult-Material entdeckt

    Seit der Entdeckung der Supraleitfähigkeit von Sr2RuO4 im Jahr 1994 wurden hunderte von Studien über Strontiumruthenat (Sr2RuO4) veröffentlicht, die beschreiben, dass Sr2RuO4 ein ganz besonderes System mit einzigartigen Eigenschaften ist. Durch diese Eigenschaften gilt Sr2RuO4 als das Kult- ... mehr

    Lichtinduzierte Formänderung von MXenen

    Das Verfahren der ultraschnellen Laserspektroskopie ermöglicht die Beobachtung der Bewegung von Atomen auf ihren natürlichen Zeitskalen im Bereich von Femtosekunden, dem Millionstel einer milliardstel Sekunde. Die Elektronenmikroskopie hingegen bietet eine atomare räumliche Auflösung. Durch ... mehr

    Kunststoffe nachhaltiger recyceln

    Kunststoffe sind allgegenwärtig, sie zählen zu den verbreitetsten Werkstoffen überhaupt. Eine effiziente Wiederverwertung dieser wichtigen Materialien erfolgt bislang allerdings nur bedingt. Um hierfür neue Lösungen zu bieten, entwickelten Chemiker der Universität Konstanz um Prof. Dr. Stef ... mehr