21.01.2020 - Westfälische Wilhelms-Universität Münster (WWU)

Chemiker lassen Bor-Atome wandern

Forscher stellen Kohlenstoff-Kohlenstoff-Kupplungen vor, bei denen das Halbmetall Bor erhalten bleibt

Organische Moleküle mit Atomen des Halbmetalls Bor zählen zu den bedeutendsten Bausteinen für Syntheseprodukte, die nötig sind, um Arzneistoffe und landwirtschaftliche Chemikalien herzustellen. Bei den üblicherweise in der Industrie eingesetzten Stoffumwandlungen geht allerdings häufig die wertvolle Bor-Einheit verloren, die in einem Molekül ein anderes Atom ersetzen kann. Chemikern der Westfälischen Wilhelms-Universität Münster (WWU) ist es jetzt gelungen, die Anwendungsmöglichkeiten von handelsüblichen und industriell verwendeten Bor-Verbindungen, sogenannten Allylboronsäureestern, wesentlich zu erweitern.

Da sogenannte Boronsäurederivate in ihren Varianten sehr vielfältig und verlässlich anwendbar sind, setzen sie Chemiker häufig ein, um wichtige Kohlenstoff-Kohlenstoff-Kupplungen (C-C-Kupplungen) aufzubauen. Das bedeutendste Verfahren, bei dem Boronsäurederivate verwendet werden, ist die mit dem Nobelpreis ausgezeichnete Suzuki-Miyaura-Kupplung. Ebenfalls breite Anwendung in der Synthese finden die sogenannten Allylboronsäureester, die auch zu dieser Klasse der Bor-Verbindungen gehören.

In ihrer aktuellen Studie stellen die Chemiker um Prof. Dr. Armido Studer vom Organisch-Chemischen Institut der WWU nun C-C-Kupplungen vor, bei denen die Bor-Einheit aus dem Ausgangsstoff im Produkt erhalten bleibt. Die Wissenschaftler verwenden dazu Methoden der sogenannten Radikalchemie. Das Prinzip funktioniert so: Die Bor-Einheit „wandert“ von einem Kohlenstoffatom zum Nachbaratom und ermöglicht dadurch eine zweite C-C-Kupplung.

Durch diese Methode können die Chemiker schrittweise einzelne Bausteine von Molekülen an unterschiedlichen Stellen des Grundgerüsts einbauen. „Da die Bor-Einheit nach wie vor im Produktmolekül verbleibt, sozusagen ,konserviert‘ wird, kann sie zusätzlich durch eine weitere Moleküleinheit ersetzt werden, wofür sich das gesamte Spektrum der industriellen Methoden eignet. Die handelsüblichen Allylboronsäureester erscheinen somit in einem neuen Gewand“, betont Studienleiter Armido Studer. Die neue Methode kann zukünftig unter anderem für die Herstellung von Arzneimitteln relevant sein.

Fakten, Hintergründe, Dossiers
  • Bor
  • Boronsäurederivate
  • Radikalchemie
Mehr über WWU Münster
  • News

    Nanotechnologen erstellen fotografischen Film eines molekularen Schalters

    Sie sind die molekularen Gegenstücke zu elektrischen Schaltern und spielen für viele Prozesse in der Natur eine wichtige Rolle: molekulare Schalter. Solche Moleküle können auf umkehrbare Weise zwei oder mehr Zustände einnehmen und so molekulare Prozesse steuern. In lebenden Organismen spiel ... mehr

    Enzym setzt durch Licht neuartige, bisher unbekannte Reaktion in Gang

    In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht kat ... mehr

    Einem alten Übergangsmetall neue Tricks beibringen

    Bei der Herstellung von Verbindungen haben Chemiker das grundlegende Ziel, möglichst viele der eingesetzten Substanzen zu nutzen und Abfallprodukte zu vermeiden. Durchbrüche bei der Suche nach solchen Strategien dienen unter anderem dazu, industrielle Innovationen voranzutreiben und Medikam ... mehr

  • Forschungsinstitute

    Westfaelische Wilhelms-Universität Münster (WWU), Institut für Anorganische und Analytische Chemie

    mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr