14.04.2020 - Physikalisch-Technische Bundesanstalt (PTB)

Helmholtz-Preis für hochpräzise Messungen zur Relativitätstheorie und zu Nanomaterialien

Grundlagenphysik rund um Einsteins Spezielle Relativitätstheorie auf der einen Seite und Grundlagen für messtechnische (metrologische) Anwendungen im Bereich von Tausendstel Mikrometern (Nanometern) auf der anderen Seite – so weit spannt sich der Bogen beim diesjährigen Helmholtz-Preis. Den Preis vergibt der Helmholtz-Fonds alle zwei Jahre für hervorragende wissenschaftliche und technische Forschung auf dem Gebiet „Präzisionsmessung in Physik, Chemie und Medizin“. In der Kategorie „Grundlagen“ erhalten ihn drei Wissenschaftler für ihre Arbeit an der Physikalisch-Technischen Bundesanstalt (PTB). Christian Sanner, Nils Huntemann und Richard Lange ist es mit einem Langzeitvergleich zweier hochpräziser Uhren (optischer Ytterbiumuhren) der PTB gelungen, einen deutlich verbesserten Test einer fundamentalen Symmetrie des Raumes der (Lorentz-Symmetrie) für Elektronen durchzuführen. In der Kategorie „Anwendungen“ geht der Helmholtz-Preis an ein neunköpfiges Team aus Forschern der Humboldt-Universität zu Berlin und der Albert-Ludwigs-Universität Freiburg um die Berliner Physikerin Saskia F. Fischer und den Freiburger Mikrosystemtechniker Peter Woias. Die Gruppe hat ebenfalls grundlegend Neues geschaffen: nämlich die wissenschaftlich-technischen Voraussetzungen für standardisierte Messungen an einzelnen Nanostrukturen. In der Wissenschaft vom exakten Messen, der Metrologie, gilt der Helmholtz-Preis als eine der international bedeutendsten Auszeichnungen. In den Kategorien „Grundlagen“ und „Anwendungen“ ist er mit jeweils 20 000 Euro dotiert.

Test der Symmetrie der Raumzeit mit Atomuhren

Das Team aus der PTB hat sich mit einer grundlegenden Frage der Physik befasst. Es ist eine Grundannahme von Einsteins Spezieller Relativitätstheorie, dass die Lichtgeschwindigkeit unabhängig von der Ausbreitungsrichtung immer gleich ist. Nun kann man fragen: Wie universell ist diese nach Hendrik Antoon Lorentz benannte Symmetrie des Raumes gewahrt, gilt sie auch genauso für die Bewegung materieller Teilchen, oder gibt es Richtungen, entlang derer sie sich bei gleicher Energie schneller oder langsamer bewegen? Insbesondere für hohe Energien der Teilchen sagen theoretische Modelle, die eine vereinheitlichte Beschreibung der Welt des Kleinsten, der Quanten, und der Schwerkraft, der Gravitation, ermöglichen sollen (Quantengravitation) eine Verletzung der Lorentz-Symmetrie vorher.

Dank ihrer einzigartigen Präzision bietet die Untersuchung der Wechselwirkung von Licht mit Atomen, die optische Spektroskopie atomarer Übergänge, die Möglichkeit, Annahmen und Vorhersagen der Relativitätstheorie experimentell zu testen. Im Jahr 2016 konnten die PTB-Physiker eine Uhr vorstellen, die auf dieser Wechselwirkung hochpräziser Laser mit einem bestimmten Atom (Ytterbium-Ion 171Yb+) beruht und eine relative Genauigkeit von 3 · 10hoch-18 erreicht: hätte man diese Uhr beim Urknall vor 13,7 Milliarden Jahren gestartet, würde sie heute eine Sekunde falsch gehen. Zwei in unterschiedlichen Raumrichtungen orientierte Versionen dieser optischen Yb+-Uhr finden in der jetzigen Arbeit Anwendung, um die Lorentz-Symmetrie und insbesondere die Isotropie der Raumzeit – einfach ausgedrückt, physikalische Gesetze sind nicht richtungsabhängig – mit bisher unerreichter Präzision zu vermessen.

In einem Lorentz-symmetrischen Universum, wie es die Relativitätstheorie annimmt, muss ein physikalisches Experiment immer dasselbe Ergebnis liefern, unabhängig von seiner räumlichen Orientierung oder gleichmäßigen Bewegung. Aber bleibt diese Symmetrie bis an die Grenze des mit den Yb+-Uhren Messbaren gewahrt? Die schon vor über hundert Jahren mit dem Michelson-Morley-Experiment begonnene Tradition fortführend, gelang es Christian Sanner, Nils Huntemann und Richard Lange, die bislang besten Anisotropie-Limits um zwei weitere Größenordnungen nach unten zu verschieben. Quasi nebenbei – aber nicht weniger bedeutend – bestätigt ihr Langzeitvergleich die extrem geringe systematische Messunsicherheit der beiden optischen Ytterbiumuhren von weniger als 4 · 10hoch–18. Die Ergebnisse wurden in "Nature" veröffentlicht.

Ein neuer Weg zu standardisierter Nanometrologie

Den Helmholtz-Preis 2020 in der Kategorie „Anwendung“ erhält ein Team aus Forschern der Humboldt-Universität zu Berlin und der Albert-Ludwigs-Universität Freiburg. Maximilian Kockert, Danny Kojda, Rüdiger Mitdank, Anna Mogilatenko und Saskia F. Fischer (Humboldt-Universität Berlin) sowie Zhi Wang, Johannes Ruhhammer, Michael Kröner und Peter Woias (Albert-Ludwigs-Universität Freiburg) ist es gelungen, erstmals ein standardisierbares Verfahren zur Messung von Strukturen im Bereich von Nanometern (tausendstel Mikrometern) zu entwickeln.

Das Problem bei Materialien mit derart kleinen Abmessungen ist, dass sie oftmals ganz andere Eigenschaften als die entsprechenden makroskopischen Materialien haben. Denn auf der Nanoebene spielt neben der Art des Materials die Form der Oberflächen eine große Rolle, also die Abmessungen oder die Oberflächenstruktur. Der vor hundert Jahren im Bauhaus geprägte Satz für Industriedesign und Architektur „Form follows function“ muss für Materialparameter auf der Nanometerskala häufig auf den Kopf gestellt werden: „Form defines function“. Dies ermöglicht, dass Materialparameter durch die Formgebung maßgeschneidert werden können. Umso wichtiger ist es, die Materialparameter dann auch genau und zuverlässig zu messen – was für die Metrologie eine Herausforderung ist.

Das Forscherteam stellt in seiner Arbeit nun standardisierbare Präzisionsmessungen des sogenannten Seebeck-Koeffizienten vor, die sich von ihrem Modellsystem, nämlich Drähten aus Silber mit Nanometer-Durchmesser und einer kristallinen Struktur (Einkristallen), auf andere Nanostrukturen und auch auf weitere Parameter ausweiten lassen. Damit hat die Gruppe den Nachweis erbracht, dass Hochpräzisionsmessungen für die vollständige thermoelektrische Charakterisierung (also die Messung von elektrischer Leitfähigkeit, Wärmeleitfähigkeit und des Seebeck-Koeffizienten) auch bei metallischen Nanomaterialien in standardisierter Weise über einen großen Temperaturbereich möglich sind. Die Ergebnisse wurden in "Scientific Reports" veröffentlicht.

Der Preis

Der Helmholtz-Preis wird vom Helmholtz-Fonds für hervorragende wissenschaftliche und technologische Forschung auf dem Gebiet „Präzisionsmessung in Physik, Chemie und Medizin“ verliehen – und zwar in den Kategorien „Grundlagen“ und „Anwendungen“. Wann und wo die Ehrung der diesjährigen Preisträger stattfindet, ist angesichts der derzeitigen Situation noch nicht festgelegt. Das geplante Heraeus-Seminar vom 11. bis 14. Mai in Bad Honnef („Hybrid Solid State Quantum Circuits, Sensors, and Metrology“), in dessen Rahmen die Preisverleihung geplant war, wurde abgesagt.

  • Christian Sanner, Nils Huntemann, Richard Lange, Christian Tamm, Ekkehard Peik, Marianna S. Safronova, Sergey G. Porsev; "Optical clock comparison for Lorentz symmetry testing"; Nature 567, 204 (2019).
  • M. Kockert, D. Kojda, R. Mitdank, A. Mogilatenko, Z. Wang, J. Ruhhammer, M. Kroener, P. Woias, S. F. Fischer; "Nanometrology: Absolute Seebeck coefficient of individual silver nanowires"; Scientific Reports 9, 20265 (2019).
Fakten, Hintergründe, Dossiers
  • Atomuhren
  • Präzisionsmesstechnik
Mehr über Physikalisch-Technische Bundesanstalt
  • News

    Warum altern Lithium-Schwefel-Batterien noch zu schnell?

    Mit der Elektromobilität nimmt auch die Suche nach Alternativen zu den klassischen Lithium-Ionen-Batterien Fahrt auf. Eine der Kandidatinnen heißt Lithium-Schwefel-Batterie. Um herauszufinden, warum dieser Typ Batterie noch nicht seine maximal mögliche Kapazität und Lebensdauer erreicht, wu ... mehr

    Neuartige Nano-Schalter lassen sich per Lichtsignal bedienen

    Ein Forschungsteam der Friedrich-Schiller-Universität und der Physikalisch-Technischen Bundesanstalt entwickelt neuartige Nano-Schalter, die sich per Lichtsignal bedienen lassen. In der Fachzeitschrift „Chemistry A European Journal“ stellen die Forscher ihr Konzept eines photoschaltbaren Fe ... mehr

    Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen

    Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt. Dazu isolierten sie ein einzelnes Ar¹³⁺-Ion aus einem extrem heißen P ... mehr

  • q&more Artikel

    Die Bedeutung der Rückführbarkeit in der Labormedizin

    Der Weltmetrologietag wird jährlich am 20. Mai begangen, und in diesem Jahr ist „Messen für die Gesundheit“ das Schwerpunktthema. mehr

    Die Messung der Avogadro-Konstante

    Seit dem 20. Mai 2019 ist die Masseneinheit Kilogramm nicht mehr durch den Internationalen Kilogramm-Prototypen definiert, sondern durch den Zahlenwert des Planck’schen Wirkungsquantums, der wichtigsten Fundamentalkonstante aus der Quantenphysik. Voraussetzung für diese Definition war die M ... mehr

    Naturkonstanten als Hauptdarsteller

    Der 20. Mai 2019 ist ein besonderer Tag. Denn ab diesem Tag sind die gewohnten Definitionen dessen, was ein Kilogramm und ein Mol, ein Ampere und ein Kelvin sein sollen, Geschichte. Die Zukunft im Internationalen Einheitensystem sieht vielmehr so aus, dass von nun an Naturkonstanten die Hau ... mehr

  • Autoren

    Prof. Dr. Gavin O’Connor

    Gavin O'Connor wurde in Dublin geboren und schloss 1993 sein Diplom in Analytischer Chemie am Athlone Institute of Technology in Irland ab. In Großbritannien setzte er sein Studium der Analytischen Chemie bis zum Bachelor of Sciences fort, bevor er 1998 an der Universität Plymouth im Bereic ... mehr

    Dr. André Henrion

    André Henrion, Jahrgang 1957, studierte Chemie an der Humboldt-Universität zu Berlin, wo er 1988 mit einer Arbeit auf dem Gebiet der Physikalischen Organischen Chemie promovierte. Danach arbeitete er zunächst am Analytischen Zentrum der Akademie der Wissenschaften, bevor er 1992 zur PTB wec ... mehr

    Rüdiger Ohlendorf

    Rüdiger Ohlendorf, Jahrgang 1959, studierte Chemieingenieurwesen mit Schwerpunkt Instrumentelle Analytik an der Fachhochschule Münster. Nach Beschäftigungen am ISAS (Institut für Spektrochemie und Angewandte Spektroskopie) und bei der Schering AG wechselte er zur Physikalisch-Technischen Bu ... mehr

Mehr über Humboldt Universität Berlin
  • News

    Die helle Seite der Macht: Mit Laserlicht vom Halbleiter zum Metall

    Eine Gruppe von Forschern des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Humboldt-Universität zu Berlin hat herausgefunden, dass sich Halbleiter leichter und schneller als bisher angenommen in Metalle und zurück verwandeln lassen. Diese Entdeckung könnte die Rechenleistung vi ... mehr

    CatLab - Leuchtturm für die Wasserstoff-Forschung

    Im Energiesystem der Zukunft nimmt grüner Wasserstoff eine Schlüsselfunktion ein. Wasserstoff-basierte chemische Energieträger werden als Langzeitspeicher im Energiesystem benötigt und sind entscheidend für die klimaneutrale Gestaltung industrieller Prozesse. Die Nationale Wasserstoffstrate ... mehr

    Atome beim Fotoshooting

    Als es vor etwa 40 Jahren erstmals gelang, ein einzelnes gefangenes Atom zu fotografieren, war dies ein Meilenstein der Quantenforschung. Dieser Durchbruch wurde damals möglich, weil das Atom mit elektrischen Feldern im luftleeren Raum festgehalten wurde – fern von Oberflächen, deren Streul ... mehr

  • q&more Artikel

    Lichtregulierte Herstellung von bioabbaubarem Plastik

    Licht ist ein leistungsfähiges Werkzeug, um eine große Vielfalt von chemischen Prozessen zu kontrollieren. Der Einsatz von spezifischen, photochromen Molekülen erlaubt, Reaktionen reversibel und mit einer hohen räumlichen sowie zeitlichen Auflösung durchzuführen. mehr

    Alzheimer: die Suche nach einem Ausweg

    Obwohl die Krankheit Alzheimer bereits vor mehr als 100 Jahren entdeckt wurde, sind die essenziellen Ereignisse, die den Verlauf der Krankheit maßgeblich beeinflussen, weitest­gehend unbekannt. Seit einiger Zeit rückt nun das Tau-Protein, eine schon länger bekannte Komponente von Ablagerung ... mehr

  • Autoren

    Michael Kathan

    Michael Kathan, Jahrgang 1988, studierte Chemie an der Freien Universität Berlin und ETH Zürich, wo er sich mit Fluorchemie und gespannten Aromaten beschäftigte. Nach seinem Masterabschluss an der Freien Universität Berlin begann er seine Doktorarbeit 2015 in der Arbeitsgruppe von Prof. Ste ... mehr

    Fabian Eisenreich

    Fabian Eisenreich, Jahrgang 1988, studierte Chemie an der Humboldt-Universität zu Berlin, fertigte dort sowohl seine Bachelor- als auch Masterarbeit in der Arbeitsgruppe von Prof. Stefan Hecht an und wurde während des Studiums durch das Deutschlandstipendium unterstützt. Im Dezember 2014 be ... mehr

    Prof. Dr. Stefan Hecht

    Stefan Hecht, Jahrgang 1974, studierte Chemie an der Humboldt-Universität zu Berlin und der University of California, Berkeley, USA, wo er 2001 bei Prof. Jean M. J. Fréchet im Bereich der makromolekularen organischen Chemie promovierte. Nach Etappen als Nachwuchsgruppenleiter an der Freien ... mehr

Mehr über Uni Freiburg
  • News

    „Regenbogen-Grafiken sind schön, aber für die Wissenschaft nicht geeignet“

    Bunte Karten und Abbildungen mit regenbogenfarbigen Verläufen aus wissenschaftlichen Arbeiten dienen oft als Hingucker in Zeitschriften und werden in den sozialen Medien gerne geteilt. Hydrologe Dr. Michael Stölzle vom Institut für Geo- und Umweltnaturwissenschaften der Universität Freiburg ... mehr

    Belastungen in Kunststoffen und Bauteilen sichtbar machen

    Einem Forschungsteam unter Leitung von Prof. Dr. Michael Sommer, Inhaber der Professur Polymerchemie der Technischen Universität Chemnitz und  PD Dr. Michael Walter, Projektleiter am Exzellenzcluster Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Albert-Ludwigs-Unive ... mehr

    Programmierbare Strukturen aus dem Drucker

    Forschende der Universität Freiburg und der Universität Stuttgart haben ein neues Verfahren entwickelt, um bewegliche, sich selbst-anpassende Materialsysteme im handelsüblichen 3-D-Drucker herzustellen. Die Systeme können unter dem Einfluss von Feuchtigkeit komplexe Formveränderungen durchl ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr