14.04.2020 - Technische Universität München

Durchbruch für Photonik-Chips

Licht emittierende Silizium-Germanium-Legierungen

Seit 50 Jahren suchen Forscher in aller Welt nach einer Möglichkeit, Laser aus Silizium oder Germanium zu bauen. Einem Team der Technischen Universität Eindhoven (TU/e) und der Technischen Universität München (TUM) ist es nun gelungen, eine Legierung aus Germanium und Silizium zu entwickeln, die Licht emittieren kann. Einen Siliziumlaser zu entwickeln, der in aktuelle Chips integriert werden kann, rückt damit erstmalig in greifbare Nähe.

Elektronische Chips heizen sich auf, wenn Daten übertragen werden. Der Laptop auf den Knien wird warm; Rechenzentren benötigen Kühlaggregate mit Megawatt-Leistung. Abhilfe schaffen könnte die Photonik, denn Lichtpulse erzeugen keine Abwärme.

Seit 50 Jahren bemüht sich die Forschung daher, Laser aus Silizium oder Germanium zu bauen. Bisher vergeblich. Silizium, das Arbeitspferd der Chip-Industrie, kristallisiert normalerweise in einem kubischen Kristallgitter. In dieser Form ist es für die Umwandlung von Elektronen in Licht nicht geeignet.

Zusammen mit Kollegen der Technischen Universität München sowie der Universitäten in Jena und Linz ist es Forschern der Technischen Universität Eindhoven nun gelungen, Legierungen aus Germanium und Silizium zu entwickeln, die Licht emittieren können.

Entscheidend dafür war es, Germanium und Legierungen aus Germanium und Silizium mit hexagonalem Kristallgitter zu erzeugen. „Dieses Material hat eine direkte Bandlücke und kann daher selbst Licht erzeugen“, sagt Prof. Jonathan Finley, Professor für Halbleiter-Nanostrukturen und -Quantensysteme an der TU München.

Der Trick mit dem Template

Schon 2015 gelang es Prof. Erik Bakkers und seinem Team an der TU Eindhoven, hexagonales Silizium zu erzeugen. Dafür züchteten sie zunächst Nanodrähte aus einem anderen Material mit einer hexagonalen Kristallstruktur und überzogen diese mit einer Schicht aus Germanium und Silizium. Das darunter liegende Material zwang dabei auch der Germanium-Silizium-Legierung eine hexagonale Struktur auf.

Doch die Strukturen ließen sich zunächst nicht zum Leuchten anregen. Im Austausch mit den Kollegen am Walter Schottky Institut der Technischen Universität München, die während der Optimierung Generation für Generation die optischen Eigenschaften analysierten, gelang es schließlich das Herstellungsverfahren so zu verbessern, dass die Nanodrähte schließlich tatsächlich Licht ausstrahlen konnten.

„Inzwischen haben wir optische Eigenschaften erzielt, die fast mit Indiumphosphid oder Galliumarsenid vergleichbar sind“, sagt Bakkers. Einen Laser aus Germanium-Silizium-Legierungen zu bauen, der noch dazu in die gängigen Herstellungsprozesse integriert werden kann, erscheint damit nur noch eine Frage der Zeit.

„Wenn wir die elektronische Kommunikation auf einem Chip und von Chip zu Chip optisch erledigen können, so kann das die Geschwindigkeit um einen Faktor von bis zu 1000 erhöhen, sagt Jonathan Finley. „Darüber hinaus könnten durch die direkte Kopplung von Optik und Elektronik Chips für laserbasiertes Radar für selbstfahrende Autos, für chemische Sensoren zur medizinischen Diagnose oder zur Messung der Luft- und Lebensmittelqualität dramatisch günstiger werden.“

Mehr über TU München
  • News

    Salzsäure bringt Katalysatoren auf Trab

    Ein Forschungsteam der Technischen Universität München (TUM) unter Leitung des Chemikers Johannes Lercher hat ein Syntheseverfahren entwickelt, mit dem sich die Aktivität von Katalysatoren zur Erdöl-Entschwefelung um ein Vielfaches steigern lässt. Das neue Verfahren lässt sich möglicherweis ... mehr

    Pionierarbeit: Prototyp eines neuen Brennstoffs

    Die Technische Universität München (TUM) und Framatome arbeiten gemeinsam an der Entwicklung eines neuen Brennstoffs für die Forschungs-Neutronenquelle Heinz Maier-Leibniz (FRM II). Der Brennstoff soll aus niedrig angereichertem Uran-Molybdän (U-Mo) bestehen. Die ersten Prototypen sollen An ... mehr

    Superatome als Katalysatoren

    Edelmetalle wie Platin sind gute Katalysatoren, doch sie haben ihren Preis. Während die chemische Industrie deshalb versucht, immer kleinere Katalysatorpartikel herzustellen, verfolgt ein Team der Technischen Universität München (TUM) einen neuen Ansatz: Es baut Katalysatorpartikel zielgeri ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • q&more Artikel

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

  • Autoren

    Prof. Dr. Ulrich Kulozik

    Ulrich Kulozik, Jahrgang 1955, studierte Lebensmitteltechnologie an der Technischen Universität München, wo er 1986 promovierte und sich 1991 für die Fächer Lebensmittel- und Bio-Prozesstechnik habilitierte. Er war bis 1999 u.a. als Department Manager Process & Product Development und Strat ... mehr

    Mine Ozcelik

    Mine Ozcelik, Jahrgang 1984, schloss an der Universität Ankara (Türkei) ihr Studium in Chemieingenieurwesen 2008 mit dem Bachelor und 2012 mit dem Master of Engineering ab. Ab September 2008 arbeitete sie in der Lebensmittelindustrie als F&E- und Laborleiterin in Ankara, wo sie die ersten F ... mehr

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

Mehr über TU Eindhoven