15.04.2020 - Fraunhofer-Institut für Werkstoffmechanik (IWM)

Schmierstoffe am Computer charakterisieren und designen

Berechnungsmodelle auf Basis von Molekül-Struktureigenschaften

Geschmierte Wellen, Lager oder Getriebe laufen nur dann »wie am Schnürchen«, wenn die Bauteile auf einem perfekten Schmierfilm gleiten und dabei möglichst wenig Reibung, Verschleiß und Energieverlust erzeugen. Dafür müssen die Ingenieure das Verhalten des Schmierfilms im sogenannten Tribokontakt kennen, was mit Experimenten kaum zu messen ist. Das Fraunhofer IWM, MikroTribologie Centrum µTC, macht darum Schmierstoffeigenschaften mittels atomistischer Methoden berechenbar und hat jüngst spannende Erkenntnisse zu einer der zentralen Kenngrößen, der Druckabhängigkeit der Schmierstoffviskosität, in der wissenschaftlichen Fachzeitschrift Physical Review Letters veröffentlicht.

Um einen Schmierstoff neu zu entwickeln oder zu verbessern ist es wichtig, sein Verhalten genau zu kennen: Druck, Temperatur, Scherrate und Viskosität sind dabei wichtige Größen. »Den Schmierfilm experimentell zu vermessen ist sehr schwer, weil die dazu benötigen Bedingungen kaum kontrolliert einzustellen sind«, erklärt Dr. Kerstin Falk, Mitarbeiterin der Gruppe Multiskalenmodellierung und Tribosimulation des Freiburger Fraunhofer-Instituts für Werkstoffmechanik IWM. »In einigen Bereichen treten zum Beispiel so extreme Pressungen auf, dass lokal ein Druck im Giga-Pascal-Bereich entsteht«, so die Expertin für Tribologie, der Lehre von Reibung und Verschleiß. Simulationen können dort weiterhelfen, wo Experimente schwierig sind: Bisher wurden Vorhersagen für das Schmierstoffverhalten bei hohem Druck meist aus »Hochrechnungen« der Ergebnisse von Experimenten in normalem Druckbereich gewonnen. Leider versagt dieses Vorgehen jedoch bei den extrem hohen Drücken, die lokal in geschmierten Reibkontakten auftreten.

Viskosität bei hohem Druck exakt berechnen

Mit atomistischen Molekulardynamiksimulationen kann jedoch die Physikerin Schmierstoffeigenschaften wie die Viskosität unter kontrollierten, beliebig einstellbaren Druck- und Temperaturbedingungen vorhersagen. »Wir haben die Viskosität sehr erfolgreich für verschiedene Modellschmierstoffe bei Druck bis hin zu 700 Mega-Pascal berechnet«, sagt Dr. Kerstin Falk. »Unsere Modell-Schmierstoffe bestanden aus einfachen linearen oder aus verzweigten Alkanen«, erklärt sie weiter. Alkane oder Paraffine sind sehr stabile Ketten aus Kohlenstoff und Wasserstoff, und bilden den Grundbestandteil vieler gängiger Öle und Kraftstoffe.

Schmierstoffe charakterisieren aufgrund ihrer Moleküleigenschaften

Doch Falks eigentliches Ziel war, ein praktikableres Vorhersagemodell als bisher zu erhalten. Es sollte die Berechnung der Viskositätswerte für bestimmte Bedingungen im Reibspalt erlauben, ohne erst aufwändige Molekulardynamiksimulationen durchführen zu müssen. Dazu nutzten Dr. Kerstin Falk und ihre Kollegen Dr. Daniele Savio und Prof. Michael Moseler atomistische Simulationen, die quasi wie eine »virtuelle Superlupe« Einblicke auf die mikroskopische Struktur und Dynamik der Schmierstoffmoleküle ermöglichen. So fand das Team heraus, welche drei molekularen Eigenschaften eines Schmierstoffs seine Viskosität maßgeblich bestimmen: die Molekül-Querschnittsflächen, die Kettenflexibilität und der Abstand zwischen den einzelnen Molekülen. Sind diese Eigenschaften einmal bestimmt, lässt sich damit die Viskosität eines Schmierstoffs bei verschiedensten Bedingungen einfach und genau berechnen. »Umgekehrt benutzt können wir mit dieser Simulationsmethode auch die passenden Moleküle für bestimmte tribologische Beanspruchungen finden«, sagt Dr. Kerstin Falk. »Und in Kombination mit zusätzlichen quantenchemischen Simulationen zur Wechselwirkung des Schmierstoffs mit Bauteiloberflächen können wir unseren Kundinnen und Kunden den passenden Schmierstoff für ihre Anwendung vorschlagen«, fügt Prof. Michael Moseler hinzu.

In Zukunft soll mit diesen neuen Ergebnissen als Basis auch das Schmierstoffverhalten bei sehr großen Geschwindigkeiten und damit großen Scherraten untersucht werden. Und es wird betrachtet, wie sich ein Schmierstoff in einem sehr engen Reibspalt verhält, der nur wenige Moleküldurchmesser breit ist. Auch andere Schmierstoffe können Dr. Kerstin Falk und ihre Kollegen mit der neuen Methode charakterisieren – beispielsweise wasserbasierte Schmierstoffe für umweltverträgliche Anwendungen.

Fakten, Hintergründe, Dossiers
Mehr über Fraunhofer-Institut IWM
Mehr über Fraunhofer-Gesellschaft
  • News

    Die Fledermaus steht Pate bei der Digitalen Transformation

    Digitale Simulationen statt Trial and Error: Im Projekt PaintVisco modellieren Forschende am IPA die Entwicklung und Verarbeitung von Lacken. Die Daten dafür liefert ein neu konzipiertes Rheometer, mit dem sich erstmals exakt die viskoelastischen Eigenschaften von Lacken beim Trocknen und A ... mehr

    Kunststoff unter Strom

    Bisher war es nicht möglich, Sensoren und andere elektronische Geräte in einem einzigen Arbeitsgang additiv zu fertigen. Genau das ist nun aber einem Forschungsteam vom Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA gelungen. Eine entscheidende Rolle spielen dabei leitfä ... mehr

    Welche Rolle spielt Wasserstoff als Energieträger im globalen Energiesystem?

    Wasserstoff und H2-Syntheseprodukten wird in der künftigen Klimapolitik eine große Bedeutung beigemessen. Doch wie könnte sich der Wasserstoffbedarf global entwickeln? Dieser Frage widmet sich eine neue Meta-Studie unter Koordination des Fraunhofer ISI, die im Rahmen des Forschungsprojekts ... mehr

  • Videos

    Effektive Abwasserreinigung durch Nanofiltration

    Wasser ist lebenswichtig – Abwässer müssen daher möglichst effizient gereinigt werden. Möglich machen das keramische Membranen, mit denen erstmalig 200 Dalton kleine Moleküle abtrennbar sind. Dieses Video zeigt, dass sich hiermit auch Industrie-Abwässer effizient reinigen lassen.Dr. rer. na ... mehr

    Flüssigkristalle als Schmierstoffe

    Schmierstoffe sind fast überall im Einsatz – in Motoren, Produktionsmaschinen, Getrieben, Ventilen. Obwohl sie in nahezu allen Maschinen für einen ruhigen Lauf sorgen, gab es auf diesem Gebiet in den vergangenen beiden Jahrzehnten keine grundlegenden Innovationen. Das Fraunhofer-Institut fü ... mehr

    Briefkontrolle mit Terahertz-Wellen

    Bislang ist es recht aufwändig, Briefe sicher und zuverlässig auf gefährliche Inhaltsstoffe wie Sprengstoffe oder Drogen hin zu untersuchen. Abhilfe könnte ein neuer Terahertz-Scanner schaffen. Forscher des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Kaiserslautern und der Hüb ... mehr

  • Forschungsinstitute

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

    Die Fraunhofer-Gesellschaft ist die führende Organisation für angewandte Forschung in Europa. Unter ihrem Dach arbeiten 59 Institute an über 40 Standorten in ganz Deutschland. Rund 17 000 Mitarbeiterinnen und Mitarbeiter erzielen das jährliche Forschungsvolumen von 1,5 Mrd Euro. Davon erwir ... mehr