05.08.2020 - Ruhr-Universität Bochum (RUB)

Einblicke in die Struktur eines rätselhaften Katalysators

Der Katalysator für die Produktion von Methanol hatte sich in der Vergangenheit allen Versuchen, seine Struktur aufzuklären, entzogen. Jetzt wissen Forscher mehr über sein aktives Zentrum.

Methanol ist eine der wichtigsten Basischemikalien, etwa um Kunststoffe oder Baumaterialien herzustellen. Um den Produktionsprozess noch effizienter gestalten zu können, wäre es hilfreich, mehr über den Kupfer-Zinkoxid-Aluminiumoxid-Katalysator zu wissen, der bei der Methanolherstellung im Einsatz ist. Bislang war es jedoch nicht möglich, seine Oberfläche unter Reaktionsbedingungen mit strukturaufklärenden Methoden zu untersuchen. Einem Team der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) ist es dennoch gelungen, Einblicke in den Aufbau seines aktiven Zentrums zu gewinnen.

Das Team zeigte erstmals, dass die Zink-Komponente des aktiven Zentrums positiv geladen ist und dass der Katalysator sogar zwei kupferbasierte aktive Zentren besitzt. „Über den Zustand der Zink-Komponente am aktiven Zentrum wurde seit Einführung des Katalysators in den 1960er-Jahren kontrovers diskutiert. Aus unseren Erkenntnissen können wir nun zahlreiche Ideen ableiten, wie wir den Katalysator in Zukunft optimieren können“, resümiert Prof. Dr. Martin Muhler, Leiter des Lehrstuhls für Technische Chemie an der RUB und Max Planck Fellow am MPI CEC. Er kooperierte für die Arbeiten mit dem Bochumer Forscher Dr. Daniel Laudenschleger und dem Mülheimer Forscher Dr. Holger Ruland.

Methanol nachhaltig herstellen

Die Arbeiten waren eingebettet in das Projekt Carbon-2-Chem, das zum Ziel hat, Hüttengase, die bei der Stahlproduktion anfallen, für die Herstellung von Chemikalien zu nutzen und so den CO2-Ausstoß zu verringern. Auch für eine nachhaltige Methanolsynthese könnten Hüttengase als Ausgangsstoff dienen, zusammen mit elektrolytisch hergestelltem Wasserstoff. Im Rahmen von Carbon-2-Chem untersuchte das Forschungsteam zuletzt, wie sich Verunreinigungen in Hüttengasen, die zum Beispiel in der Kokerei oder dem Hochofen entstehen, auf den Katalysator auswirken. Diese Arbeiten ermöglichten letztendlich auch die Erkenntnisse über den Aufbau des aktiven Zentrums.

Aktives Zentrum für Analyse deaktiviert

Die Forscher hatten stickstoffhaltige Substanzen – Ammoniak und Amine – als Verunreinigungen identifiziert, die als Katalysatorgift wirken. Sie deaktivieren den Katalysator, allerdings nicht dauerhaft: Verschwinden die Verunreinigungen, erholt sich der Katalysator von selbst. Mithilfe einer einzigartigen selbst gebauten Forschungsapparatur – einer Flussapparatur mit integrierter Hochdruck-Pulseinheit – leiteten die Forscher Ammoniak und Amine über die Katalysatoroberfläche, wodurch sie das aktive Zentrum mit Zink-Komponente zeitweilig deaktivierten. Trotz dieser Deaktivierung der Zink-Komponente konnte weiterhin eine andere Reaktion am Katalysator stattfinden: nämlich die Umsetzung von Ethen zu Ethan. Auf diese Weise wiesen die Forscher ein parallel arbeitendes zweites aktives Zentrum nach, das metallisches Kupfer beinhaltet, aber keine Zink-Komponente besitzt.

Da Ammoniak und die Amine an positiv geladene Metallionen auf der Oberfläche gebunden werden, war damit klar, dass Zink als Teil des aktiven Zentrums eine positive Ladung trägt.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Kleine Helfer machen Wertstoffe aus Abfall

    Bakterien sollen Abfallstoffe nicht nur zu wertvollen Chemikalien umbauen, sondern daraus auch noch die Energie dafür schöpfen. Schließlich können sie selbst für weitere Prozesse wiederverwendet werden. Diese Vision treibt Prof. Dr. Dirk Tischler an, der an der Ruhr-Universität Bochum (RUB) ... mehr

    Chemie in Mahlbechern ohne Lösungsmittel

    Normalerweise werden chemische Reaktionen in Lösungsmitteln durchgeführt, die dann vom Wunschprodukt wieder abgetrennt werden müssen und dabei jede Menge Müll erzeugen. Prof. Dr. Lars Borchardt, Leiter der Arbeitsgruppe Mechanochemie an der Ruhr-Universität Bochum (RUB) will weg vom Lösungs ... mehr

    Enzyme für industrielle Anwendungen fit machen

    Bakterielle Enzyme sind oft leistungsfähige, aber auch sehr empfindliche Katalysatoren. Um ihre Leistung abzurufen, brauchen sie daher eine besondere Umgebung. Neue Techniken, mit denen sich bakterielle Enzyme effizient an Elektroden koppeln lassen, haben Forscher der Ruhr-Universität Bochu ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Mehr über Max-Planck-Institut für chemische Energiekonversion