06.08.2020 - Humboldt-Universität zu Berlin

Atome beim Fotoshooting

Erstmals einzelne Atome fotografiert, die weniger als einen Tausendstel Millimeter über einer lichtleitenden Glasfaser schweben

Als es vor etwa 40 Jahren erstmals gelang, ein einzelnes gefangenes Atom zu fotografieren, war dies ein Meilenstein der Quantenforschung. Dieser Durchbruch wurde damals möglich, weil das Atom mit elektrischen Feldern im luftleeren Raum festgehalten wurde – fern von Oberflächen, deren Streulicht die Kamera blenden könnte.

Wissenschaftlern der Humboldt-Universität zu Berlin (HU) und der Technischen Universität Wien ist es nun erstmals gelungen, Fotos von einzelnen Atomen zu schießen, die weniger als einen Tausendstel Millimeter über einer lichtleitenden Glasfaser schweben. Dies erlaubt, im Labor Effekte wie die Absorption und Aussendung von Licht viel kontrollierter als bisher zu untersuchen. Außerdem helfen die gewonnenen Erkenntnisse dabei, Bauelemente für eine neue Generation optischer Glasfaser-Netzwerke zu entwickeln.

Die Arbeitsgruppe von Prof. Dr. Arno Rauschenbeutel an der HU Berlin hat vor etwa zehn Jahren erstmals eine neuartige Atom-Licht-Schnittstelle realisiert, in der einige tausend Atome in der Nähe von speziellen Glasfasern gefangen werden. Es handelt sich um sogenannte optische Nanofasern, die 100mal dünner sind als ein menschliches Haar. Die Atome werden mit einer Pinzette aus Laserlicht 0,2 Mikrometer von der Glasfaser-Oberfläche entfernt festgehalten. Zugleich werden sie mittels Laserlicht auf eine Temperatur von ca. einem Millionstel Grad über dem absoluten Nullpunkt gekühlt.

Trotz dieser extremen Bedingungen konnten die Forscher nun sogar Experimente mit einzelnen fasergekoppelten Atomen machen. Die Atome haben sie dabei fotografiert und kurze Filme von wenigen Sekunden Dauer aufgenommen. Hierfür benutzten sie eine ultra-empfindliche Kamera und mussten jegliches Umgebungslicht rigoros abschirmen. Dank der permanenten Kühlung hielten die Atome so gut still, dass die Bilder fast eine halbe Sekunde lang belichtet werden konnten.

„Aufbauend auf diesen Ergebnissen, können wir in Zukunft die Wechselwirkung von Licht und Materie extrem genau, nämlich Atom für Atom, untersuchen“, sagt Dr. Philipp Schneeweiß, Mitglied des Rauschenbeutel-Teams. Mögliche Anwendungen dieser Forschung umfassen effizientere Lichtquellen und photosensitive Elemente, die Verwendung von einzelnen Atomen als Sonden zur Erforschung der Eigenschaften von Oberflächen sowie die optische Verarbeitung von Quanteninformationen.

Fakten, Hintergründe, Dossiers
  • Atome
  • Glasfasern
Mehr über Humboldt Universität Berlin
  • News

    Die helle Seite der Macht: Mit Laserlicht vom Halbleiter zum Metall

    Eine Gruppe von Forschern des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Humboldt-Universität zu Berlin hat herausgefunden, dass sich Halbleiter leichter und schneller als bisher angenommen in Metalle und zurück verwandeln lassen. Diese Entdeckung könnte die Rechenleistung vi ... mehr

    CatLab - Leuchtturm für die Wasserstoff-Forschung

    Im Energiesystem der Zukunft nimmt grüner Wasserstoff eine Schlüsselfunktion ein. Wasserstoff-basierte chemische Energieträger werden als Langzeitspeicher im Energiesystem benötigt und sind entscheidend für die klimaneutrale Gestaltung industrieller Prozesse. Die Nationale Wasserstoffstrate ... mehr

    Perowskit-LED aus dem Drucker

    Einem Team von Forschern des HZB und der Humboldt-Universität zu Berlin ist es zum ersten Mal gelungen, Leuchtdioden (LEDs) aus einem hybriden Perowskit-Halbleitermaterial per Tintenstrahldruck herzustellen. Das Tor zu einer breiten Anwendung solcher Materialien in vielerlei elektronischen ... mehr

  • q&more Artikel

    Lichtregulierte Herstellung von bioabbaubarem Plastik

    Licht ist ein leistungsfähiges Werkzeug, um eine große Vielfalt von chemischen Prozessen zu kontrollieren. Der Einsatz von spezifischen, photochromen Molekülen erlaubt, Reaktionen reversibel und mit einer hohen räumlichen sowie zeitlichen Auflösung durchzuführen. mehr

    Alzheimer: die Suche nach einem Ausweg

    Obwohl die Krankheit Alzheimer bereits vor mehr als 100 Jahren entdeckt wurde, sind die essenziellen Ereignisse, die den Verlauf der Krankheit maßgeblich beeinflussen, weitest­gehend unbekannt. Seit einiger Zeit rückt nun das Tau-Protein, eine schon länger bekannte Komponente von Ablagerung ... mehr

  • Autoren

    Michael Kathan

    Michael Kathan, Jahrgang 1988, studierte Chemie an der Freien Universität Berlin und ETH Zürich, wo er sich mit Fluorchemie und gespannten Aromaten beschäftigte. Nach seinem Masterabschluss an der Freien Universität Berlin begann er seine Doktorarbeit 2015 in der Arbeitsgruppe von Prof. Ste ... mehr

    Fabian Eisenreich

    Fabian Eisenreich, Jahrgang 1988, studierte Chemie an der Humboldt-Universität zu Berlin, fertigte dort sowohl seine Bachelor- als auch Masterarbeit in der Arbeitsgruppe von Prof. Stefan Hecht an und wurde während des Studiums durch das Deutschlandstipendium unterstützt. Im Dezember 2014 be ... mehr

    Prof. Dr. Stefan Hecht

    Stefan Hecht, Jahrgang 1974, studierte Chemie an der Humboldt-Universität zu Berlin und der University of California, Berkeley, USA, wo er 2001 bei Prof. Jean M. J. Fréchet im Bereich der makromolekularen organischen Chemie promovierte. Nach Etappen als Nachwuchsgruppenleiter an der Freien ... mehr

Mehr über TU Wien
  • News

    Wie sauer sind Atome?

    Der Säuregrad von Molekülen lässt sich leicht bestimmen. Bei Atomen auf einer Oberfläche war das bisher nicht möglich. Mit einer neuen Mikroskopietechnik der TU Wien ist das nun gelungen. Wie sauer oder basisch eine Substanz ist, bestimmt ganz maßgeblich ihr chemisches Verhalten. Entscheide ... mehr

    2D-Nanomaterial MXene: Der perfekte Schmierstoff

    Die Fahrradkette kann man mit Öl schmieren, aber was macht man bei einem Marsrover oder bei einem glühend heißen Transportband in der Stahlindustrie? Ganz spezielle Nanomaterialien wurden nun von der TU Wien gemeinsam mit Forschungsgruppen aus Saarbrücken (Deutschland), der Purdue Universit ... mehr

    Neuer Katalysator für geringeren CO2-Ausstoß

    An der TU Wien suchte man nach einem Katalysator, der Kohlendioxid in andere Substanzen umwandeln kann. Fündig wurde man nun in der Materialklasse der Perowskite. Wenn der CO2-Anteil der Atmosphäre nicht weiter steigen soll, dann muss das Kohlendioxid dort, wo es entsteht, in etwas anderes ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr