20.08.2020 - Technische Universität Darmstadt

Vom Treibhausgas zu wertvollen Grundchemikalien

Ionische Flüssigkeiten helfen beim Verständnis der elektrokatalytischen Umsetzung von CO₂

Für eine nachhaltige Wirtschaft der Zukunft ist die Umwandlung von Kohlendioxid in Kohlenwasserstoffe und andere Grundchemikalien von Bedeutung. Forscher der TU Darmstadt und des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien haben jetzt wesentliche Schritte der elektrochemischen Kohlendioxid-Umwandlung entschlüsselt.

Auf dem Weg in eine nachhaltige Wirtschaft spielt die Umwandlung von Kohlendioxid in Kohlenwasserstoffe und andere Grundchemikalien eine wichtige Rolle. Ein zukunftsträchtiges Verfahren ist die elektrochemische Umsetzung des aus der Luft oder aus industriellen Abfall- und Nebenströmen isolierten Gases an Kupferkatalysatoren. Als Energiequelle kann Solar- oder Windstrom dienen. Das bietet zugleich die Möglichkeit, überschüssige erneuerbare Energie in Form von chemischer Energie zu speichern. Allerdings ist die elektrokatalytische Umsetzung von Kohlendioxid ein komplexer Prozess, dessen einzelne Schritte noch nicht aufgeklärt sind. „Ein tieferer Einblick in die Reaktionsmechanismen ist unbedingt erforderlich, um die Umsetzung des Kohlendioxids in Richtung der gewünschten Zielprodukte zu lenken“, betont Professor Bastian J. M. Etzold vom Fachbereich Chemie der TU Darmstadt.

Zusammen mit der Gruppe von Professor Jan P. Hoffmann (Fachbereich Material- und Geowissenschaften der TU Darmstadt) und Forschern vom Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien haben Etzold und seine Mitarbeiter jetzt wesentliche Schritte der elektrochemischen Kohlendioxid-Umwandlung entschlüsselt. Dabei verwendeten sie einen Trick, wie sie jetzt in der Fachzeitschrift Angewandte Chemie International Edition berichten: Auf dem Kupferkatalysator brachten die Wissenschaftler eine ionische Flüssigkeit auf, die als chemische Falle fungierte. So lassen sich Zwischenprodukte der elektrochemischen Umsetzung abfangen und bestimmte Reaktionsschritte unterbinden oder verlangsamen. „Wir konnten die daraus resultierende Veränderung im Produktspektrum nutzen, um das komplexe Reaktionsnetzwerk zu vereinfachen und Schlüsselschritte zu identifizieren“, erklärt Professor Etzold. Unter anderem konnten die Wissenschaftler neue Erkenntnisse zur Umsetzung von Kohlendioxid zu den Alkoholen Ethanol und Propanol sowie zu den Kohlenwasserstoffen Ethan und Ethen ableiten.

Die Strategie orientiert sich an einem Konzept namens SCILL (solid catalyst with ionic liquid layer), das Etzold erstmals vor 13 Jahren publizierte. SCILL diente bislang beispielsweise der Modifikation von Platinkatalysatoren für Brennstoffzellen. Das Aufbringen der ionischen Flüssigkeit auf dem Katalysator sei eine einfach anwendbare Methode, unterstreicht Etzold: „Das Verfahren kann in zahlreichen Laboren und spezialisierten Versuchsständen, auch unter technisch relevanten Bedingungen, verwendet werden.“ Dank der Vielfalt an ionischen Flüssigkeiten eigne sich der Ansatz auch für die Untersuchung von anderen elektrochemischen Reaktionen sowie generell zur Steuerung des Produktspektrums in der Elektrokatalyse.

Fakten, Hintergründe, Dossiers
Mehr über TU Darmstadt
  • News

    Elektrisierte Wassertropfen

    Etwas so einfaches wie die Bewegung von Wassertropfen auf Oberflächen sollte eigentlich verstanden sein – würde man mutmaßen. De facto gibt es aber bisher noch zahlreiche offene Fragen zu den Kräften, die auf einen gleitenden Tropfen wirken. Ein Forscherteam des Max-Planck-Instituts für Pol ... mehr

    Tiefer Einblick dank Neutronen aus der Laserquelle

    Ein Team unter Leitung der TU Darmstadt hat erstmals mit Lasern erzeugte Neutronen für eine industrielle Anwendung nutzbar gemacht. Die Forschenden zeigten, dass Neutronen, die kompakt mit Lasern erzeugt werden, in der zerstörungsfreien Materialprüfung zum Einsatz kommen können. Als elektri ... mehr

    Warum manche Blasen mehr Tempo machen

    Eine offene Frage mit großer Relevanz für industrielle Produktionsprozesse. Forschende der TU Graz und der TU Darmstadt haben nun eine Erklärung gefunden. Es ist ein unter Fachleuten lange bekanntes Rätsel, das in vielen industriellen Produktionsprozessen sehr relevant ist: die sprunghaft u ... mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr

Mehr über Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien
  • News

    Röntgenblick in die Wasserstoffproduktion

    Grüner Wasserstoff soll für die Energiewirtschaft der Zukunft eine zentrale Rolle spielen: Unter anderem kann er Erdöl und -gas als Energieträger ablösen und auch eine emissionsfreie Produktion von Stahl und Zement ermöglichen. Für eine effiziente Wasserstoffwirtschaft muss die Produktion d ... mehr

    Aus dem Labor auf die Schiene

    Energiewende und Stickoxid-Problematik machen auch vor der Eisenbahn nicht Halt. Viele Strecken in Deutschland sind nicht elektrifiziert, vor allem im Nahverkehr. Mit Blick auf die Verkehrsministerkonferenz in Nürnberg stellt das Forschungszentrum Jülich nun ein innovatives Projekt für den ... mehr

    Neues Helmholtz-Institut zur Erforschung erneuerbarer Energien

    Druckbare Photovoltaik und innovative Technologien für Wasserstoff als Energiespeicher: Sie sind Teil der Vision einer klimaneutralen und nachhaltigen Energieversorgung zu akzeptablen Kosten. Die notwendigen Grundlagen, Materialien und Technologien sollen am neuen Helmholtz-Institut Erlange ... mehr