27.10.2020 - Max-Planck-Institut für Struktur und Dynamik der Materie

Topologische Zustände auf frischer Tat ertappt

Topologische Zustände der Materie bergen ein enormes Potenzial für zukünftige Quantentechnologien. Die Erzeugung und Steuerung solcher Zustände mit ultrakurzen Laserlichtblitzen werden derzeit intensiv untersucht. Nun hat ein internationales Forschungsteam unter Beteiligung von Theoretikern am MPSD gezeigt, dass kurzlebige topologische Zustände mit ebenso kurzen Lichtblitzen verfolgt werden können, die sich wie ein Korkenzieher drehen.

Im letzten Jahrzehnt ist die Suche nach topologischen Materialien in der Quantenmaterialwissenschaft sprunghaft angestiegen. Diese Materialien können sich an ihren Grenzen komplett anders verhalten als tief im Inneren. Topologische Isolatoren sind ein markantes Beispiel: Im Inneren leiten sie keine Elektrizität, aber durchaus entlang ihrer Oberfläche, in den so genannten Randmoden. Da diese Randmoden nur gewaltsam zerstört werden können, bieten sie einen geschützten Raum, in dem sich Elektronen mit voller Geschwindigkeit fortbewegen – quasi eine Art Quantenautobahn, nur ohne Staus.

Aufgrund dieser topologische Eigenschaft sind solche Materialien vielversprechende Kandidaten für zukünftige Quantenbauelemente. Besonders leistungsstark sind sie in Kombination mit Floquet-Engineering: Dem Konzept, dass sich periodisch angetriebene Materialien gänzlich anders verhalten können als nicht angetriebene. Da ein Laserpuls nichts anderes ist als ein periodischer Treiber, könnten in lasergetriebenen Materialien Eigenschaften nach Bedarf erzeugt werden. So haben Forscher zum Beispiel vorgeschlagen, einen korkenzieherähnlichen Laser mit links- oder rechtshändigem Licht zu verwenden, um Randmoden (wiederum links- oder rechtsdrehend) zu erzeugen und so die Drehung des Lichts dem Material einzuprägen – selbst wenn dieses ohne Laser nicht topologisch ist.

Auf dem Weg dorthin gibt es einige wichtige Hindernisse. Kontrollierte Materialveränderungen erfordern starke Laser, die sehr kurze Laserblitze erzeugen. Daher ist die Floquet-Topologie extrem kurzlebig und verschwindet innerhalb von wenigen hundert Femtosekunden (eine Femtosekunde ist zu einer Sekunde das, was eine Sekunde zum Alter des Universums ist!). Mit anderen Worten: Dieser Zustand ist schwer nachzuweisen.

Nun hat ein Forscherteam aus Wissenschaftlern des Stanford Institute for Materials and Energy Sciences (USA), der Universidad del País Vasco in San Sebastian (Spanien), des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg (Deutschland), des Zentrums für Computational Quantum Physics am Flatiron-Institut der Simons-Stiftung in New York (USA) und der Universität Freiburg (Schweiz) gezeigt, dass diese kurzlebigen Zustände mit ebenso kurzen Korkenzieher-Laserblitzen verfolgt werden können.

Der Hauptautor der Studie, Michael Schüler, ein Postdoktorand in der Gruppe von Thomas Devereaux in Stanford, erklärt: "Wenn ein topologischer Floquet-Zustand erzeugt wird, führt dies zu einer Eigenschaft namens Berry-Krümmung, in der Elektronen im Material seitlich abgelenkt werden, wenn man versucht, sie zu verschieben. Wenn man einen links- oder rechtshändigen Laser verwendet, um Elektronen aus der Probe herauszuschleudern, folgen sie leichter, wenn dieser Sondenlaserblitz die gleiche Händigkeit hat. Andersherum sträuben sich die Elektronen jedoch dagegen, der entgegengesetzten Händigkeit zu folgen. Dies bewirkt einen Unterschied im gemessenen Signal, der uns aufzeigt, welche Händigkeit die Elektronen im Material haben".

In einer Anfang dieses Jahres veröffentlichten Arbeit hatten die Forscher gezeigt, wie dieser als "Zirkulardichroismus" bekannte Effekt genutzt werden kann, um die Gleichgewichtstopologie zu erkennen. Nun haben sie gezeigt, dass dies sogar mit sehr kurzen Lichtblitzen erreicht werden kann. "Ein wichtiger Unterschied zwischen einem langlebigen und einem kurzlebigen Zustand besteht darin, dass es viel schwieriger ist, die genaue Energie der herausgeschleuderten Elektronen im kurzlebigen Zustand zu messen", sagt Schüler. "Was wir in unseren Computersimulationen gezeigt haben, ist, dass auch ohne die genaue Kenntnis der Energie die Signaldifferenz zwischen links- und rechtshändigem Licht ausreicht, um uns zu zeigen, in welchem Zustand sich die Elektronen befinden.”

Michael Sentef, Emmy Noether-Forschungsgruppenleiter am MPSD, erklärt: "Die Experimentalphysiker beschäftigen sich schon seit einiger Zeit intensiv mit der Suche nach den Floquet-topologischen Zuständen. In atomaren und molekularen Systemen sind sie gang und gäbe, aber nicht in Festkörpern. Unsere Studie sollte das Aufspüren dieser Zustände in Experimenten erleichtern". Philipp Werner, Professor in Fribourg und leitender Wissenschaftler der Studie, fügt hinzu: "Wir haben viel Arbeit in unsere Computersimulationen gesteckt und sie so weit vorangetrieben, dass wir komplizierte Effekte einbeziehen können – wie zum Beispiel diejenigen, die aus der gegenseitigen Coulomb-Abstoßung zwischen den Ladungen entstehen. Dies bietet enorme Herausforderungen, aber auch fantastische Möglichkeiten.”

Die Wissenschaftler planen nun, mit ihren Simulationen Materiezustände vorherzusagen, die noch nicht einmal theoretisch erdacht sind. Werner erklärt: "Das so genannte Nichtgleichgewichts-Quanten-Vielteilchenproblem ist eines der schwierigsten Probleme für Physiker, aber auch eines, das reich an faszinierenden Effekten ist. Unser Traum ist es, neue Effekte zu antizipieren und Experimentalphysiker zu inspirieren, nach ihnen zu suchen."

Fakten, Hintergründe, Dossiers
  • topologische Zustände
  • Quantentechnologie
  • Quantenmaterialwissenschaft
  • topologische Materialien
  • Floquet-Topologie
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Topologie wird magnetisch: Die neue Vielfalt topologischer magnetischer Materialien

    Die elektronische Struktur unmagnetischer Kristalle lässt sich mit Hilfe vollständiger Theorien der Band-Topologie klassifizieren, was zu einer Art „topologischem Periodensystem“ führt. Eine analoge Klassifikation magnetischer Materialien war bisher jedoch nicht möglich, und daher wurden nu ... mehr

    Metallische Substrate helfen molekularem Quantenschalter

    Die Quantendynamik von Wasserstoff ist für viele Probleme in der Natur von zentraler Bedeutung, da sie stark von ihrer Umgebung beeinflusst wird. In einem gerade veröffentlichten Beitrag im Journal PRL befassen sich Mitglieder der Lise Meitner Gruppe am MPSD mit dem Wasserstofftransfer inne ... mehr

    Zelluläres Kraftwerk recycelt Industrie-Abgase

    Kohlenmonoxid ist ein hochgiftiges Gas. Menschen sterben innerhalb weniger Minuten, wenn sie es einatmen. Trotzdem gibt es Bakterien, die Kohlenmonoxid nicht nur widerstehen können, sie verwenden es sogar zum Atmen und zur Vermehrung. Erkenntnisse darüber, wie diese Bakterien überleben, öff ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr