29.10.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weg frei für biobasierte Flipflops

Neuartiges Bio-Treibmittel aus Gas und Wasser

Bioplastik liegt im Trend. Für Produkte mit Schaumstoffen gibt es aber noch wenige nachhaltige Alternativen. ETH-​Pioneer-Fellow Zuzana Sediva entwickelt ein Verfahren, das aus organischem Abfall dereinst elastische Schuhsohlen oder Yogamatten machen soll.

Zuzana Sediva hat eine Vorliebe für Pistazien. «Es gab eine Zeit, da sammelte ich sie in Sizilien und brachte sie nach Hause, um Glace zu machen», erzählt sie. Dass diese Leidenschaft am Ursprung ihrer Dissertation stand und schliesslich zu ihrer Geschäftsidee wurde, ahnte sie da noch nicht.

Doch der Reihe nach: Die ETH-​Forscherin entwickelt ein Verfahren, mit dem Bio-​Abfälle zu Schaumstoffen verarbeitet werden können. Solche werden in der Automobilindustrie und im Bau, aber auch für die Herstellung von Schuhsohlen, Spielzeugen, Yogamatten, Verpackungen oder Matratzen benötigt. Also überall dort, wo der elastische, federnde Effekt gewünscht wird, der Schaumstoffe ausmacht.

Heute werden Schaumstoffe in der Regel aus fossilen Ressourcen durch Zugabe synthetischer Stoffe gefertigt. Die daraus entstehenden Produkte sind eine riesige Belastung für die Umwelt, denn bis Kunststoffe in Mikroteile zerfallen, dauert es Jahrzehnte bis Jahrhunderte, ganz abgebaut werden sie nie. Produkte aus Plastikschaumstoff sind zudem sehr schwer zu rezyklieren.

Sedivas Lösung ist gleich in doppelter Hinsicht nachhaltig: erstens handelt es sich bei der von ihr verwendeten Biomasse um ein natürliches Abfallprodukt – unter anderem aus der Landwirtschaft. Es müssen dafür also keine Böden bewirtschaftet werden. Zweitens baut sich organischer Schaumstoff viel schneller ab als solcher aus Plastik.

Neuartiges Treibmittel aus Gas und Wasser

Bioplastik ist im Trend. Jedes Jahr werden weltweit 20 bis 30 Prozent mehr davon hergestellt. Für Schaumstoff gibt es heute aber noch sehr wenige nachhaltige Alternativen. Das liegt daran, dass die chemische Herstellung gewisse Eigenschaften an das Ausgangsmaterial voraussetzt. So schäumt ein Kunststoff auf, wenn ihm ein Treibmittel zugegeben wird, meistens unter starker Hitze und grossem Druck. Organischer Abfall jedoch ist in der Regel hitzeempfindlich und kann nicht unter derart hohen Temperaturen verarbeitet werden. «Die gewünschte Elastizität von Schaumstoff mit Biomasse zu erzeugen, ist sehr schwierig», erklärt Sediva.

Sedivas Lösung besteht unter anderem aus einem neuartigen Treibmittel, das im Herstellungsprozess zugegeben wird und dafür sorgt, dass die Biomasse bei tieferen Temperaturen aufschäumt. Das Bio-​Treibmittel ist – im Gegensatz zu den synthetischen Zusatzstoffen bei Plastik-​Schaumstoffen –  komplett grün. Es basiert auf einem Gemisch von Gas und Wasser. Sediva hatte es im Rahmen ihrer Dissertation an der ETH entwickelt, letztes Jahr meldete sie zusammen mit der ETH ein Patent dafür an.

Damit Schaumstoffe aus organischen Abfällen eine hohe Elastizität erreichen, muss ein genaues «Rezept» eingehalten werden. Dazu gehören das speziell entwickelte Treibmittel, eine Mischung aus organischen Abfällen und ein bestimmter Herstellungsprozess. Sediva überlegt sich, ob sie in Zukunft auch dieses «Rezept» schützen lassen soll.

Nun optimiert die Forscherin im Rahmen ihres Pioneer Fellowships der ETH die Methode für den Industriegebrauch. Eines weiss sie jetzt schon: die Herstellung des neuen Treibmittels ist auch in grossen Mengen kein Problem. «Wir können damit bis zu 60, vielleicht sogar 100 Liter Schaum pro Stunde herstellen», sagt sie. Den Beweis dafür will sie in den nächsten Monaten erbringen. Damit ist eines der Kriterien erfüllt, damit der neue Bioschaumstoff nicht nur im Labor, sondern auch am Markt ein Erfolg wird.

Ein weiterer Vorteil von Sedivas Methode ist, dass diese mit den klassischen Herstellungsverfahren von Schaumstoffen kompatibel ist. Potenzielle Kunden brauchen also keine zusätzliche Infrastruktur.

Verpackungen – und Schuhe?

Wer zu den künftigen Kunden zählen könnte, hänge auch davon ab, mit wem sie Pilotprojekte realisieren könne, sagt Sediva. Derzeit suche sie dafür Partner aus der Industrie. «Ich sehe als Einstiegsmarkt Verpackungen.» Dort würden Schaumstoffe eingesetzt, um Produkte zu schützen – oder fürs Design. Auch die Schuhbranche könnte später ein möglicher Absatzmarkt werden.

Zuzana Sediva wuchs in Tschechien auf und kam für ihr Studium der Biochemie in die Schweiz. Für Schaumstoffe begann sie sich auf natürlichem Weg zu interessieren: Das selbstgemachte Pistazien-​Glace führte dazu. Glace ist nämlich ein essbarer Schaumstoff. Ganz generell sind Schaumstoffe nichts anderes als Materialien mit geringer Dichte, dessen Zellen oder Poren mit Luft oder Gas gefüllt sind. Auch Brot oder Holz können so dazu gezählt werden.

Sedivas Faible für Pistazien-​Glace weckte also ihr wissenschaftliches Interesse, und dieses wiederum führte zur Geschäftsidee. In ihrer Dissertation konnte Sediva zeigen, dass ihr auf Gas und Wasser basierendes Treibmittel funktioniert, um Schaumstoffe herzustellen. Dafür experimentierte sie wiederum mit Glace. Geschmacksrichtung: Vanille.

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Biochemische Zufallszahl

    Bei der Verschlüsselung von Information sowie für Spielautomaten werden echte Zufallszahlen benötigt. Das sind Zahlen, die tatsächlich zufällig sind und von niemandem erraten werden können, auch nicht von Personen, welche detaillierte Kenntnisse haben von der Methode, mit der sie generiert ... mehr

    Wirkungsweise wichtiger Katalysatoren entschlüsselt

    Die Spaltung von Wasser in Wasserstoff und Sauerstoff ist eine wichtige chemische Reaktion, auch im Hinblick auf die vermehrte Nutzung von Wasserstoff als Energieträger in nachhaltiger Mobilität. Ein internationales Forscherteam hat nun die Wirkungsweise eines Katalysators entschlüsselt. Wa ... mehr

    40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

    Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr