21.12.2020 - Karlsruher Institut für Technologie (KIT)

Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

Forscher setzen fortgeschrittene Methoden mit Hybridfunktionalen zur Analyse der aktiven Zentren ein

Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kollegen aus Spanien und Argentinien dabei einen entscheidenden Fortschritt erzielt: Wie sie nun in der Zeitschrift Physical Review Letters berichten, setzen sie Rechenmethoden mit sogenannten Hybridfunktionalen ein, die eine zuverlässige Interpretation experimenteller Daten ermöglichen.

Viele wichtige Technologien, beispielsweise zur Energieumwandlung, zur Emissionsreduktion oder zur Produktion von Chemikalien, funktionieren nur mit passenden Katalysatoren. Daher gewinnen hocheffiziente Materialien für die heterogene Katalyse immer mehr an Bedeutung. Bei der heterogenen Katalyse liegen der als Katalysator fungierende Stoff und die miteinander reagierenden Stoffe in verschiedenen Phasen vor, beispielsweise fest und gasförmig. Die Materialzusammensetzungen lassen sich mithilfe verschiedener Methoden bereits zuverlässig bestimmen – die Prozesse, die direkt an der Katalysatoroberfläche ablaufen, entziehen sich hingegen noch den meisten Analyseverfahren. „Aber gerade die hochkomplexen chemischen Prozesse an der alleräußersten Haut der Katalysatoren sind entscheidend“, erklärt Professor Christof Wöll, Leiter des Instituts für Funktionelle Grenzflächen (IFG) am KIT, „denn dort befinden sich die aktiven Zentren, an denen die katalysierte Reaktion abläuft.“ 

Genaue Untersuchung der Oberfläche von Pulverkatalysatoren

Zu den wichtigsten heterogenen Katalysatoren gehören Ceroxide, das sind Verbindungen des Seltenerdmetalls Cer mit Sauerstoff. Sie liegen als Pulver vor, bestehend aus Nanopartikeln mit kontrollierter Struktur. Die Form der Nanopartikel beeinflusst die Reaktivität des Katalysators wesentlich. Um die Vorgänge an der Oberfläche solcher Pulverkatalysatoren zu untersuchen, verwenden Forschende seit einiger Zeit Sondenmoleküle, beispielsweise Kohlenmonoxidmoleküle, die sich an den Nanopartikeln anlagern, und messen die Proben mit Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS). Die Infrarotstrahlung regt Molekülschwingungen an. Anhand der Schwingungsfrequenzen der Sondenmoleküle lassen sich detaillierte Informationen über die Art und Zusammensetzung der katalytischen Zentren gewinnen. Die Interpretation der experimentellen IRRAS-Daten war bisher allerdings problematisch. Denn gerade für die technologisch relevanten Pulverkatalysatoren sind viele Schwingungsbanden zu beobachten, deren genaue Zuordnung schwierig ist. Theoretische Berechnungen waren dabei bisher nicht wirklich hilfreich, weil die Abweichung vom Experiment – auch im Fall von Modellsystemen – so groß war, dass sich die experimentell beobachteten Schwingungsbanden nicht zuverlässig zuordnen ließen. 

Lange Rechenzeit – hohe Genauigkeit

Forschende am Institut für Funktionelle Grenzflächen (IFG) und am Institut für Katalyseforschung und -technologie (IKFT) des KIT haben nun in einer internationalen Kooperation mit Kolleginnen und Kollegen aus Spanien und Argentinien, koordiniert von Dr. M. Verónica Ganduglia-Pirovano vom Consejo Superior de Investigaciones Científicas (CSIC) in Madrid, ein wichtiges Problem der theoretischen Analyse identifiziert und gelöst. Wie die Wissenschaftlerinnen und Wissenschaftler in der Zeitschrift Physical Review Letters berichten, haben sie anhand systematischer theoretischer Studien und der Validierung der Ergebnisse an Modellsystemen gezeigt, dass die bisher eingesetzten theoretischen Methoden grundlegende Schwächen aufweisen. Solche Schwächen sind generell zu beobachten bei Rechnungen mit der Dichtefunktionaltheorie (DFT), einer Methode, mit der sich, beruhend auf der Dichte der Elektronen, der quantenmechanische Grundzustand eines Vielelektronensystems bestimmen lässt. Wie die Forschungsgruppe feststellte, lassen sich die Schwächen mit sogenannten Hybridfunktionalen überwinden, die DFT und Hartree-Fock-Methode, ein Näherungsverfahren in der Quantenchemie, miteinander kombinieren. Die Rechnungen werden dadurch zwar ziemlich aufwendig, aber auch hochgenau. „Zwar sind die für diese neuen Methoden erforderlichen Rechenzeiten um etwa einen Faktor 100 größer als die für konventionelle Verfahren“, erläutert Wöll. „Aber dieser Nachteil wird durch die hervorragende Übereinstimmung mit den experimentellen Systemen mehr als ausgeglichen.“ Am Beispiel nanoskaliger Ceroxid-Katalysatoren demonstrierten die Forschenden diesen Fortschritt, der wesentlich dazu beitragen kann, heterogene Katalysatoren wirksamer und langlebiger zu machen.

Fakten, Hintergründe, Dossiers
Mehr über KIT
  • News

    Elektronenstrahlschmelzen bringt sprödes Metall in Form

    Wolfram hat mit 3.422 Grad Celsius den höchsten Schmelzpunkt aller Metalle. Ideal für den Einsatz dort, wo es richtig heiß wird, etwa für Weltraumraketendüsen, Heizelemente von Hochtemperaturöfen oder im Fusionsreaktor. Das Metall ist aber zugleich sehr spröde und daher schwer zu verarbeite ... mehr

    Perowskit-Schichten genau beleuchtet

    Perowskit-Halbleiter gelten als vielversprechende Materialien für Solarzellen der nächsten Generation. Wie gut geeignet ein Halbleiter für die Anwendung in der Photovoltaik ist, lässt sich unter anderem an der sogenannten Photolumineszenz-Quantenausbeute erkennen. Forschende des Karlsruher ... mehr

    Dreidimensionaler Blick in aktive Katalysatoren

    Struktur und Funktion von Katalysatoren in Aktion zu verstehen – das ermöglicht ein von Forschenden des Karlsruher Instituts für Technologie (KIT) mit Kollegen an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI in der Schweiz und an der European Synchrotron Radiation ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr