16.03.2021 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Forscher knacken molekularen Stickstoff mit Kalzium

Erkenntnisse werden nicht nur Lehrbücher verändern, sondern könnten auch zur Entwicklung vereinfachter Abläufe in der Industrie beitragen

Chemiker weltweit sind ständig auf der Suche, den in der Luft enthaltenen elementaren Stickstoff, kurz N2, mit einfachen Mitteln für chemische Reaktionen verfügbar zu machen. Das gestaltet sich schwierig, denn Stickstoff ist ein wenig reaktionsfreudiges Gas mit einer Dreifachbindung, die zu den stärksten bekannten chemischen Bindungen gehört. Ein Forschungsteam der FAU hat nun gezeigt, dass das in der Natur häufig vorkommende Metall Kalzium in der Lage ist, die hochstabile Stickstoff-Bindung zu brechen – und das schon bei minus 60 Grad Celsius. Das ist in zweierlei Hinsicht von Bedeutung: Die FAU-Forschenden liefern damit neue Erkenntnisse in die bindungsbrechenden Fähigkeiten des in dieser Hinsicht bislang belächelten Kalziums. Zudem können ihre Ergebnisse als Grundlage für die Entwicklung von künftigen industriellen Prozessen dienen.

Stickstoff ist als Hauptbestandteil der Luft überall unbegrenzt verfügbar. Er wird aufgrund seiner geringen chemischen Reaktionsfreudigkeit unter anderem als Schutzgas zur Lebensmittellagerung eingesetzt. Stickstoff hält etwa vorgebackene Brötchen monatelang frisch, Pflanzen brauchen ihn, um zu wachsen. Allerdings können sie den Stickstoff aus der Luft nicht direkt verwerten. Die große Herausforderung besteht darin, das hochstabile zweiatomige Molekül N2 in nützliche Chemikalien umzuwandeln. Anfang der 1900er-Jahre gelang dies zwei deutschen Chemikern. Sie entwickelten das nach ihnen benannte Haber-Bosch-Verfahren, das N2 in Ammoniak (NH3) umwandelt. Ammoniak wurde ursprünglich zur Herstellung von Sprengstoff verwendet, aber kommt heute vor allem als Düngemittel zum Einsatz. Beim Haber-Bosch-Verfahren setzt ein Übergangsmetall-Katalysator die chemische Reaktion in Gang. Zusätzlich erfordert die Umwandlung des hochstabilen Stickstoffs in Ammoniak hohe Drücke und Temperaturen. Dieses sogenannte Brot-aus-Luft-Verfahren ist damit sehr energieaufwendig.

Um unter anderem diesen chemischen Prozess zu vereinfachen, suchen Chemiker nach weiteren Möglichkeiten, die starke N≡N-Dreifachbindung zu brechen. Das Forschungsteam um Prof. Dr. Sjoerd Harder, Lehrstuhl für Anorganische und Metallorganische Chemie, konnte nun zeigen, dass das Hauptgruppenelement Kalzium dieses Kunststück vollbringen kann. Kalzium ist ein hauptsächlich in Kalksteinfelsen und damit in der Natur häufig vorkommendes Metall, dem bislang kaum zugetraut wurde, starke chemische Bindungen zu knacken. Im Gegensatz zu den oft giftigen Übergangsmetallen ist Kalzium generell nicht in der Lage, auf d-Orbitale zurückzugreifen – eine Wellenfunktion besonderer Symmetrie, die Bindungsbruch-Reaktionen erleichtert.

Auf der Suche nach Kalzium-Atomen in der ungewöhnlichen Oxidationsstufe +I fanden die FAU-Forschenden nun zufällig heraus, dass das Metall mit Stickstoff reagiert – ironischerweise sollte der Stickstoff bei diesem Experiment eigentlich nur ein unreaktives Schutzgas sein. Harder und sein Team isolierten ein Molekül, in dem Stickstoff zwischen zwei Kalziumatomen eingeschlossen war, und zeigten die weitere Umwandlung zu Hydrazin. Hydrazin wird im Gegensatz zum sehr stabilen Stickstoff als hochreaktiver Raketentreibstoff verwendet. Zusammen mit theoretischen Chemikern der Universitäten in Marburg und dem chinesischen Nanjing stellten die FAU-Forschenden fest, dass unerwartet doch d-Orbitale bei der Stickstoff-Aktivierung an Kalzium eine wesentliche Rolle spielen. Diese kontroverse, aber wichtige Erkenntnis bricht das Dogma, dass d-Orbitale für Hauptgruppenmetalle – Metalle, die im Periodensystem einer der Hautgruppen zugeordnet sind – irrelevant sind.

Zwar ist der Prozess weder katalytisch noch ökonomisch, doch er liefert grundlegende neue und wichtige Einblicke in bindungsbrechende Reaktionen mit Kalzium. Diese Erkenntnisse werden nicht nur die Lehrbücher der Studierenden verändern, sondern könnten auch zur Entwicklung vereinfachter Abläufe in der Industrie beitragen.

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Magnesium-Chemie auf den Kopf gestellt

    Die internationale Wissenschaftsgemeinschaft ist sich einig: Die neuesten Ergebnisse eines Forschungsteams der FAU stellen die komplette Magnesium-Chemie auf den Kopf. Die Forscher haben Magnesium, das in chemischen Verbindungen normalerweise zweifach positiv geladen ist, in der elementaren ... mehr

    Rekordauflösung in der Röntgenmikroskopie

    Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben err ... mehr

    Lichtgesteuerte Nanomaschine regelt die Katalyse

    Die Zukunftsvision der Miniaturisierung hat inzwischen eine Reihe von synthetisch molekularen Motoren hervorgebracht, die von unterschiedlichen Energiequellen angetrieben werden und verschiedene Bewegungen ausführen können. Einer Forschungsgruppe an der Friedrich-Alexander-Universität Erlan ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr