24.03.2021 - Technische Universität Wien

Moiré-Effekt: Wie man Materialeigenschaften verdrehen kann

2D-Materialien haben einen Boom ausgelöst. Nun zeigt sich: Spannende Effekte treten auf, wenn man zwei solche Schichtmaterialien aufeinander stapelt und leicht verdreht

Die Entdeckung des Materials Graphen, das nur aus einer einzigen Lage von Kohlenstoffatomen besteht, war der Startschuss für ein weltweites Forschungswettrennen: Aus unterschiedlichen Atomsorten stellt man heute sogenannte „2D-Materialien“ her – atomar dünne Schichten, die oft ganz besondere Materialeigenschaften aufweisen, wie man sie in herkömmlichen, dickeren Materialien nicht findet.

Nun wird diesem Forschungsbereich ein weiteres Kapitel hinzugefügt: Wenn man nämlich zwei solche 2D-Schichten im richtigen Winkel stapelt, ergeben sich nochmals neue Möglichkeiten. Durch die Art, in der die Atome der beiden Schichten interagieren, entstehen komplizierte geometrische Muster, und diese Muster haben entscheidende Auswirkungen auf die Materialeigenschaften, wie ein Forschungsteam der TU Wien und der Universität von Texas (Austin) nun zeigen konnte. Phononen – die Gitterschwingungen der Atome – werden ganz wesentlich durch den Winkel beeinflusst, in dem man die beiden Materialschichten aufeinander legt. Somit kann man mit winzigen Drehungen einer solchen Schicht die Materialeigenschaften maßgeblich verändern.

Der Moiré-Effekt

Die entscheidende Grundidee kann man zu Hause mit zwei Stück Fliegengitter ausprobieren – oder mit anderen regelmäßigen Strukturen, die man übereinanderlegen kann: Wenn beide Gitter perfekt deckungsgleich aufeinanderliegen, kann man von oben betrachtet kaum erkennen, ob es sich um ein oder zwei Gitter handelt. An der Regelmäßigkeit der Struktur hat sich nichts geändert.

Wenn man nun aber eines der Gitter um einen kleinen Winkel dreht, dann gibt es Stellen, an denen die beiden Gitter ungefähr zueinanderpassen, und andere Stellen, an denen sie ungefähr gegengleich zu liegen kommen. So kann man interessante Muster erzeugen – das ist der bekannte Moiré-Effekt.
„Genau dasselbe kann man auch mit den Atomgittern zweier Materialschichten machen“, sagt Dr. Lukas Linhart vom Institut für Theoretische Physik der TU Wien. Das Bemerkenswerte daran ist, dass sich dadurch bestimmte Materialeigenschaften dramatisch ändern können – so wird etwa Graphen, wenn man zwei Schichten davon auf die richtige Weise kombiniert, zum Supraleiter.

„Wir untersuchten Schichten von Molybdändisulfid, das ist neben Graphen wohl eines der wichtigsten 2D-Materialien“, sagt Prof. Florian Libisch, der das Forschungsprojekt an der TU Wien leitete. „Wenn man zwei Schichten dieses Materials aufeinanderlegt, treten sogenannte Van-der-Waals-Kräfte zwischen den Atomen dieser beiden Schichten auf. Das sind relativ schwache Kräfte, aber sie reichen aus, um das Verhalten des Gesamtsystems völlig zu verändern.“

In aufwändigen Computersimulationen analysierte das Forschungsteam, welchen Zustand die neue Zweischicht-Struktur aufgrund dieser schwachen Zusatzkräfte annimmt, und wie das die Schwingungen der Atome in den beiden Schichten beeinflusst.

Auf den Drehwinkel kommt es an

„Wenn man die beiden Schichten ein bisschen gegeneinander verdreht, dann führen die Van-der-Waals-Kräfte dazu, dass die Atome beider Schichten ihre Positionen ein kleines bisschen verändern“, so auch Dr. Jiamin Quan, von der UT Texas in Austin. In von ihm geleiteten Experimenten, die in Texas durchgeführt wurden, konnten die Rechenergebnisse bestätigt werden: Durch den Drehwinkel lässt sich einstellen, welche Atomschwingungen in dem Material physikalisch überhaupt möglich sind.

„Materialwissenschaftlich ist es eine wichtige Sache, auf diese Weise Kontrolle über die Phononen-Schwingungen zu haben“, sagt Lukas Linhart „Dass elektronische Eigenschaften eines 2D-Materials verändert werden können, indem man zwei Schichten miteinander verbindet, war schon vorher bekannt. Aber dass auch die mechanischen Schwingungen im Material dadurch gesteuert werden können, eröffnet uns nun neue Möglichkeiten: Phononen und elektromagnetische Eigenschaften hängen eng miteinander zusammen. Über die Schwingungen im Material kann man daher in wichtige Vielteilchen-Effekte steuernd eingreifen.“ Nach dieser ersten Beschreibung des Effekts für Phononen, versucht das Team nun Phononen und Elektronen kombiniert zu beschreiben und hoffen so, mehr über wichtige Phänomene wie Supraleitung zu erfahren.

Der materialphysikalische Moiré-Effekt macht also das ohnehin bereits reichhaltige Forschungsfeld der 2D-Materialien noch reichhaltiger – und erhöht die Chancen, weiterhin neue Schichtmaterialien mit bisher unerreichten Eigenschaften zu finden und ermöglicht den Einsatz von 2D-Materialien als Versuchsplattform für ganz fundamentale Eigenschaften von Festkörpern.

Fakten, Hintergründe, Dossiers
  • Phononen
  • Molybdändisulfid
  • Van-der-Waals-Kräfte
Mehr über TU Wien
  • News

    Wie sauer sind Atome?

    Der Säuregrad von Molekülen lässt sich leicht bestimmen. Bei Atomen auf einer Oberfläche war das bisher nicht möglich. Mit einer neuen Mikroskopietechnik der TU Wien ist das nun gelungen. Wie sauer oder basisch eine Substanz ist, bestimmt ganz maßgeblich ihr chemisches Verhalten. Entscheide ... mehr

    2D-Nanomaterial MXene: Der perfekte Schmierstoff

    Die Fahrradkette kann man mit Öl schmieren, aber was macht man bei einem Marsrover oder bei einem glühend heißen Transportband in der Stahlindustrie? Ganz spezielle Nanomaterialien wurden nun von der TU Wien gemeinsam mit Forschungsgruppen aus Saarbrücken (Deutschland), der Purdue Universit ... mehr

    Neuer Katalysator für geringeren CO2-Ausstoß

    An der TU Wien suchte man nach einem Katalysator, der Kohlendioxid in andere Substanzen umwandeln kann. Fündig wurde man nun in der Materialklasse der Perowskite. Wenn der CO2-Anteil der Atmosphäre nicht weiter steigen soll, dann muss das Kohlendioxid dort, wo es entsteht, in etwas anderes ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Mehr über University of Texas at Austin