03.05.2021 - Swinburne University of Technology

Leichter CO2-Katalysator

Elektrochemische Kohlenstofffixierung an einem Aerogel aus preiswerter Legierung

Viele Industrieprozesse blasen Kohlendioxid in die Luft. Die derzeitigen elektrochemischen Abscheideverfahren für Kohlendioxid sind jedoch energieintensiv und teuer, und neben viel Strom werden Edelmetalle als Katalysatoren benötigt. Wissenschaftler haben nun ein Aerogel aus einer preisgünstigen Metalllegierung entwickelt, mit dem sie Kohlendioxid hocheffizient elektrochemisch umwandeln können. Dabei entsteht vor allem Ameisensäure, eine ungiftige Grundchemikalie, schreiben sie in ihrer Studie in der Zeitschrift Angewandte Chemie.

Könnte man Kohlendioxid aus Industrieprozessen abfangen und chemisch binden, wäre dies ein großer Schritt in Richtung kohlenstoffneutrale Wirtschaft. Um Kohlendioxid aus Industrieabgasen abzuscheiden, kann man es entweder verdichten und lagern, oder es wird elektrochemisch wieder zu Kohlenstoffverbindungen umgewandelt.

Elektrochemische Abscheideverfahren sind wegen des hohen Stromverbrauchs und wegen der Katalysatorkosten unattraktiv für großtechnische Anwendungen. Tianyi Ma von der Swinburne University of Technology in Hawthorn (Australien) und Kollegen haben sich daher nach neuen Katalysatormaterialien umgesehen. Die derzeit am häufigsten verwendeten Edelmetalle Platin und Rhenium sind sehr leistungsfähig, aber zu teuer.

Die Forscher entdeckten, dass sich die unedlen Metalle Zinn und Bismut zu Aerogelen formen lassen. Aerogele sollten als luftig-leichte Materialien besonders gute Katalysatoreigenschaften aufweisen. Ihre besonders lockere Netzwerkstruktur fördert den Elektrolyttransport und enthält überall aktive Zentren für die elektrochemischen Prozesse.

Zur Herstellung der Aerogele versetzten die Wissenschaftler eine Lösung aus Bismut- und Zinnsalzen mit einem Reduktionsmittel und einem Stabilisator und ließen das Gemisch bei Zimmertemperatur sechs Stunden lang rühren, bis ein stabiles Hydrogel aus Bismut und Zinn entstanden war. Nach einfachem Gefriertrocknen erhielten sie daraus das Aerogel, ein Gebilde aus locker miteinander verwobenen und verzweigten Nanodrähten der Metalllegierung.

Im Test lieferte das neue bimetallische Aerogel ausgezeichnete Werte. Gegenüber reinem Bismut, reinem Zinn oder der nicht-gefriergetrockneten Legierung zeigte es eine deutlich höhere Stromdichte. Mit einem Wirkungsgrad von 93% ging vergleichbar viel oder sogar mehr Strom in den CO2-Umsatz als bei den derzeitigen Standardmaterialien, berichteten die Forschenden. Entsprechend ökonomisch war der Prozess.

„Die Selektivität für Ameisensäure und die Stabilität unter normalem Druck und bei Raumtemperatur sind ausgezeichnet“, schwärmen die Wissenschaftler. Als einzige Nebenprodukte entstanden minimale Mengen von Kohlenmonoxid und Wasserstoff. Dieses Ergebnis erklärten die Autor:innen mit den energetischen Bedingungen auf der Legierungsoberfläche. Demnach lagert sich das Kohlendioxidmolekül so an die Metallstruktur an, dass das Kohlenstoffatom frei bleibt und Wasserstoffatome aus den umliegenden Wassermolekülen für die Bildung von Ameisensäure binden kann.

Das könnte bedeuten, so die Forschenden, dass auch andere Metallkombinationen geeignet sind, um preiswerte, ungiftige und trotzdem hocheffiziente Katalysatoren für die elektrochemische CO2-Reduktion aufzubauen.

Fakten, Hintergründe, Dossiers
Mehr über Swinburne University of Technology
  • News

    Biologisch abbaubares Plastik durch gemeine Schalentiere

    Professor Enzo Palombo, Direktor des Environment and Biotechnology Center der Swinburne University in Melbourne, betastet eine angeblich abbaubare Plastiktüte: „…vielleicht in 5000 Jahren“, witzelt er, bevor er seine Aufmerksamkeit auf die etwas seidigere Struktur einer echten biologisch ab ... mehr

Mehr über Angewandte Chemie
  • News

    Polymere mit Helix-Blöcken

    Künstliche Polymere sind die Grundstoffe aller Kunststoffe, und haben zumeist keinen geordneten Aufbau (im Gegensatz zu Biopolymeren wie Proteinen). Ein Forschungsteam hat nun ein Polymer entwickelt, das sich durch Bestrahlung mit UV-Licht differenziert in gefaltete (geordnete) und ungefalt ... mehr

    Methan aus Kohlendioxid

    Das Recycling von CO2, insbesondere durch Umsetzung zu Methan, gewinnt bei immer noch steigenden anthropogenen CO2-Emissionen an Interesse. Ein geeignetes Verfahren ist die photothermische Methanisierung, bei der CO2 und Wasserstoff unter Bestrahlung mit Sonnenlicht katalytisch in Methan un ... mehr

    Flüssige Kraftstoffe aus Kohlendioxid

    Ein neuer Elektrokatalysator, der Kohlendioxid in flüssige Kraftstoffe umwandelt, heißt „a-CuTi@Cu“. Wie ein chinesisches Forschungsteam in der Zeitschrift Angewandte Chemie berichtet, erzeugen dabei aktive Kupferzentren auf einer amorphen Kupfer-Titan-Legierung sehr effizient Ethanol, Acet ... mehr