22.06.2021 - University of Liverpool

Wärmeisolierendes Titanat

Entdeckung von neuen Leitstrukturen für Funktionsmaterialien mithilfe von künstlicher Intelligenz

Auf der Suche nach Leitmaterialien mit besonderen Eigenschaften haben Forschende mittels künstlicher Intelligenz eine Keramikstruktur mit besonders niedriger Wärmeleitfähigkeit entdeckt. Wie sie in der Zeitschrift Angewandte Chemie schreiben, hat das Material einen ungewöhnlichen quasikristallinen Aufbau, der den Weg zu neuen wärmeisolierenden und thermoelektrischen Materialien ebnen könnte.

Keramiken mit niedriger Wärmeleitfähigkeit werden für Wärmeschutzbeschichtungen oder für thermoelektrische Anwendungen zur Gewinnung von elektrischem Strom aus Wärme gesucht. Ausgangspunkt war für Matthew J. Rosseinsky von der University of Liverpool in Großbritannien und seine Kollegen die Verbindungsklasse der Titanate. Durch Berechnung der Energien grenzten sie zunächst die Suche auf Titanate mit Anteilen von Yttriumoxid und Bariumoxid ein.

Künstliche Intelligenz sollte nun herausfinden, welche Zusammensetzung ein Material mit besonders niedriger Wärmeleitfähigkeit ergeben würde. Dafür wandte das Team maschinelle Lernmodelle an und trainierten sie an Keramiken mit bekannter Zusammensetzung und Wärmeleitfähigkeit. Das Ergebnis der Suche bestätigte die ursprüngliche chemisch-intuitive und berechnete Eingrenzung auf Barium-Yttrium-Titanate.

Die Ergebnisse zeigten aber auch, dass die chemische Zusammensetzung die Wärmeleitfähigkeit weiter beeinflussen kann. „Die KI stieß uns auf genau eine der beiden Regionen mit vielversprechender Zusammensetzung aus der Energieberechnung“, erläutert Rosseinsky. Die Forschenden synthetisierten daraufhin ein neues, bislang unbekanntes Oxid aus zehn Anteilen Barium-, sechs Anteilen Yttrium-, vier Anteilen Titan- und 27 Anteilen von Sauerstoffatomen.

Das neue Material war metastabil und besaß eine überraschende Struktur. Die Atome waren nicht wie in „normalen“ Kristallen periodisch angeordnet. Stattdessen beobachteten die Forscher eine „quasikristalline“ Struktur. In Quasikristallen sind die Atome zwar regelmäßig angeordnet, aber eine vollkommene Periodizität im dreidimensionalen Raum fällt aus. Erst wenn man eine „Fernordnung“ hinzuzieht, erkennt man die durchgehende, kristalltypische Periodizität.

Das neue Barium-Yttrium-Titanat besaß diese quasikristalline Struktur: aperiodisch, aber in Fernbeziehung geordnet. Was der Befund bedeutet, heben die Autor:innen hervor: „Oxidische Quasikristalle wurden an Grenzflächen bereits beobachtet. Das ist aber das erste Material, das durchgehend, also nicht nur an der Oberfläche, als Quasikristall identifiziert wird.“

Eine Messung der Wärmeleitfähigkeit ergab dann tatsächlich niedrigere Werte als von fast allen anderen bekannten Übergangsmetalloxiden dieser Art. (Nur ein Molybdänoxid mit komplizierter Kristallstruktur leitete die Wärme noch weniger.) Das Team konnte die niedrige Wärmeleitfähigkeit auch theoretisch erklären. Demnach verhielt sich der Quasikristall glasähnlich. Gläser haben eine ungeordnete Materialstruktur und sind als gute Wärmeisolatoren bekannt.

Die Autoren heben hervor, dass das neue Funktionsmaterial durch ein Verfahren unter Einbeziehung von künstlicher Intelligenz gefunden wurde. „Unsere Studie zeigt, wie künstliche Intelligenz bei wissenschaftlichen Entscheidungen hilft, die den wissenschaftlichen Entdeckungsprozess beschleunigen“, sagt Rosseinsky.

Fakten, Hintergründe, Dossiers
Mehr über University of Liverpool
Mehr über Angewandte Chemie
  • News

    Infrarot in die Zange genommen

    Für vielfältige Anwendungen, von der faseroptischen Telekommunikation bis zu bildgebenden Verfahren für die Biomedizin werden im nahen Infrarot-Bereich (NIR) leuchtende Substanzen benötigt. Ein Schweizer Forschungsteam hat jetzt erstmals einen Chrom-Komplex entwickelt, der Licht im begehrte ... mehr

    Wie „bio“ ist ihr Acrylharz?

    Trotz vieler Anstrengungen zur Nachhaltigkeit sind die meisten Kunststoffe bislang noch Produkte der Erdölindustrie. Forschende haben nun eine ressourcensparende Methode für die Herstellung von biobasierten Acrylharzen entwickelt. Ihre Veröffentlichung in der Zeitschrift Angewandte Chemie z ... mehr

    Endlich getrennt und frisch gebunden

    Die Kohlenstoff-Wasserstoff-Bindungen von Alkanen sind nur sehr schwer zu „knacken“, um Wasserstoffatome durch andere Atomgruppen zu ersetzen – allen voran diejenigen an den Molekülenden, wo drei Wasserstoffatome an einem Kohlenstoff hängen. Methan (CH4) und Ethan (CH3CH3) haben nur solche ... mehr