25.06.2021 - Ruhr-Universität Bochum

Zwei Tricks für die Biokatalyse

Eigentlich wirken Plasmen zerstörerisch auf Enzyme - Hier liefern sie ihnen auf Knopfdruck einen Baustein für die Biokatalyse zu

Enzyme können als Katalysatoren gute Dienste tun, zum Beispiel gezielt ein Produkt herstellen, nicht aber sein Spiegelbild, das bei anderen Verfahren aufwändig abgetrennt werden muss. Allerdings sind sie sensibel und werden mitunter durch das Substrat, das sie umsetzen, inaktiviert. Mittels Plasma konnte das Team von Prof. Dr. Julia Bandow, Inhaberin des Lehrstuhls Angewandte Mikrobiologie an der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum (RUB), ein Enzym aus einem Pilz optimal mit diesem Ausgangsstoff versorgen, ohne dass es Schaden nahm. Darüber berichtet Rubin, das Wissenschaftsmagazin der RUB.

Wirkungsloser Zwilling

Bei der Herstellung vieler Chemikalien entsteht neben dem gewünschten Produkt auch sein Spiegelbild: Die beiden sogenannten Enantiomere sind einander physikochemisch sehr ähnlich und daher schwierig voneinander zu trennen, haben aber unterschiedliche biologische Eigenschaften. Gerade bei Medikamenten ist das augenfällig: So wirkt zum Beispiel das (S)-Ibuprofen-Molekül gegen Schmerzen, sein Zwilling (R)-Ibuprofen aber nicht. Bandows Arbeitsgruppe setzt daher für die Herstellung solcher Chemikalien auf Enzyme, biologische Katalysatoren, die zum Beispiel aus Bakterien oder Pilzen stammen. Manche Enzyme stellen nur eins der beiden Enantiomere her.

Enzyme sind sensibel

Allerdings sind Enzyme eher sensible Katalysatoren. Manche sind sogar anfällig für eine Inaktivierung durch das Substrat, das sie umsetzen. „Unser Beispielenzym ist so ein Fall. Die unspezifische Peroxigenase, kurz UPO, aus dem Speisepilz Agrocybe aegerita oder Südlichen Ackerling, die die Arbeitsgruppe von Prof. Dr. Frank Hollmann aus Delft hergestellt hat, kann den Duftstoff (R)-1-Phenylethanol herstellen. Als Substrat braucht sie dafür Wasserstoffperoxid. Wenn man ihn dem Enzym in Lösung einfach in Form eines Konzentrats zufügt, deaktiviert der Ausgangsstoff der gewünschten Reaktion das Enzym innerhalb kurzer Zeit“, erklärt Julia Bandow.

Ein Dilemma, aus dem das Team mit mehreren Tricks herauskam. Einer davon war, ein Plasma zur Herstellung von Wasserstoffperoxid zu nutzen. In Plasmen, die entstehen, indem man einem Gas Energie zuführt, bilden sich zahlreiche reaktive Substanzen, die Krebszellen, Biofilme, Viren oder Prionen zerstören. Hier jedoch sollte das Plasma zum Schutz der Biokatalysatoren beitragen, indem es die reaktiven Substanzen, die für die Katalyse des Duftstoffs notwendig sind, dem Enzym auf Knopfdruck genau in der richtigen Dosis zur Verfügung stellt.

Trick Nummer zwei

Die Gruppe experimentierte also mit Plasmen auf Basis von Luft oder Edelgasen, die direkt über den in Lösung befindlichen Enzymen zur Herstellung des Duftstoffs (R)-1-Phenylethanol gezündet wurden. Die an der Oberfläche befindlichen Enzyme wurden durch die reaktiven Spezies aber schnell zerstört. So kam es zu Trick Nummer zwei: Die Forscherinnen und Forscher befestigten die Enzyme an Beads, kleinen Kugeln mit poröser Oberfläche, die am Boden der Lösung liegen und die Enzyme dort festhalten. Die optimale Beschaffenheit der Kugeln testeten sie vorher aus, denn nicht jedes Enzym kann auf jeder Oberfläche gut andocken und trotzdem seine Arbeit verrichten, für die manchmal auch Bewegungen der Enzyme notwendig sind.

So gelang es, dass oberhalb der Kugeln am Boden des Behältnisses etwas Lösung die Enzyme von der Gasphase trennt und abpuffert. Das mithilfe des Plasmas erzeugte Wasserstoffperoxid diffundiert zu den Enzymen und wird von diesen umgesetzt. Die Enzyme kommen dabei aber nie mit einer Überdosis des Substrats oder anderer reaktiver Spezies in Kontakt. So bleiben sie intakt und funktionsfähig.

Fakten, Hintergründe, Dossiers
Mehr über RUB
  • News

    Kupfer wirkt effektiv gegen Sars-Cov-2 auf Oberflächen – Silber nicht

    Kupfer und Silber sind für ihre antibakteriellen Eigenschaften bekannt. Bochumer Forschende haben untersucht, was sie gegen Viren ausrichten. Silber- und Kupferionen machen vielen Krankheitserregern den Garaus. Daher werden zum Beispiel Implantate oder medizinische Instrumente mit diesen Me ... mehr

    Ein Sieb für Moleküle

    Lange haben Forschende versucht, das aus Kohlenstoff bestehende Graphen als eine Art Sieb zu nutzen. Aber es hat keine Poren. Nun hat ein Team ein Alternativmaterial gefunden, das die Löcher von alleine mitbringt. Forschenden aus Bielefeld, Bochum und Yale ist es gelungen, eine Schicht aus ... mehr

    Molekulare Maschine im Nanocontainer

    Ein durch Licht fernsteuerbares molekulares Gyroskop haben die theoretischen Chemiker Dr. Chandan Das und Prof. Dr. Lars Schäfer von der Ruhr-Universität Bochum (RUB) gemeinsam mit einem internationalen Team am Institute for Basic Science in Südkorea konstruiert. Darüber hinaus gelang es ih ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr