08.11.2021 - Institute for Advanced Sustainability Studies e.V.

Flugzeugtreibstoff aus Sonnenlicht und Luft

Die Technik sei nun reif für den Transfer in die Industrie

Wissenschaftler der ETH Zürich haben eine Anlage gebaut, mit der sich aus Sonnenlicht und Luft CO2-neutrale Treibstoffe herstellen lassen. Das nächste Ziel ist, die Technologie auf industriellen Maßstab zu bringen und Wettbewerbsfähigkeit zu erreichen. In der Fachzeitschrift „Nature“ beschreiben Forscher aus Zürich und Potsdam die Funktionsweise des Solarreaktors und schlagen ein politisches Rahmenwerk vor, das Anreize für die verstärkte Produktion von „solarem Kerosin“ setzt.

CO2-neutrale Treibstoffe sind für eine nachhaltigere Luft- und Schifffahrt von zentraler Bedeutung. Mit der Zürcher Anlage lassen sich synthetische flüssige Treibstoffe herstellen, die bei der Verbrennung nur so viel CO2 freisetzen, wie zuvor der Luft entnommen wurde. CO2 und Wasser werden direkt aus der Umgebungsluft abgeschieden und mit Solarenergie aufgespalten. Das Produkt ist Syngas, eine Mischung aus Wasserstoff und Kohlenmonoxid, die anschließend zu Kerosin, Methanol oder anderen Kohlenwasserstoffen verarbeitet wird.

Seit zwei Jahren betreiben Forschende um Aldo Steinfeld, Professor für Erneuerbare Energieträger der ETH Zürich, ihre Mini-Solarraffinerie auf dem Dach des Maschinenlaboratoriums mitten in Zürich. „Wir konnten die technische Machbarkeit der gesamten thermochemischen Prozesskette zur Umwandlung von Sonnenlicht und Umgebungsluft in Drop-in-Treibstoffe erfolgreich nachweisen. Das Gesamtsystem arbeitet unter realen Sonneneinstrahlungsbedingungen stabil und dient uns als einzigartige Plattform für weitere Forschung und Entwicklung“, sagt Steinfeld. Die Technik sei nun reif für den Transfer in die Industrie.

Wüste bietet ideale Bedingungen

Analysen der gesamten Prozesskette ergaben, dass der Treibstoff bei einer Produktion im industriellen Maßstab 1,20 bis 2 Euro pro Liter kosten würde. Als Produktionsstandort sind Wüstenregionen mit hoher Sonneneinstrahlung besonders gut geeignet. „Im Gegensatz zu Biokraftstoffen, deren Potenzial wegen der Knappheit landwirtschaftlicher Flächen begrenzt ist, könnte der weltweite Bedarf an Flugzeugtreibstoff durch die Nutzung von weniger als einem Prozent der weltweiten Trockenflächen gedeckt werden und stände nicht in Konkurrenz zur Nahrungs- oder Futtermittelproduktion“, erläutert Johan Lilliestam, Forschungsgruppenleiter am IASS und Professor für Energiepolitik an der Universität Potsdam. Wenn die Materialien für den Bau der Produktionsanlagen wie Glas und Stahl mit erneuerbaren Energien hergestellt werden, gehen die Treibhausgasemissionen gegen Null.

Politische Unterstützung nötig

Angesichts der hohen Anfangsinvestitionskosten benötigen Solarkraftstoffe allerdings politische Unterstützung beim Markteintritt. „Die bestehenden Förderinstrumente der Europäischen Union – Emissionshandel und Offsetting – reichen nicht aus, um die Marktnachfrage nach Solartreibstoffen zu fördern. Deshalb schlagen wir ein technologiespezifisches EU-Quotensystem für Flugzeugtreibstoff vor. Das heißt, die Fluggesellschaften sollten verpflichtet werden, einen Anteil ihres Treibstoffs aus solaren Quellen zu decken“, sagt Lilliestam.

Für den Anfang, wenn der Preis für das „solare Kerosin“ hoch und die Produktionskapazitäten niedrig sind, empfehlen die Studienautoren eine Quote von 0,1 Prozent. Ein solcher Anteil hätte kaum Auswirkungen auf die Kosten des Fliegens, würde aber den Aufbau von Produktionsanlagen ermöglichen – und somit eine Lernkurve in Gang setzen, die zu verbesserter Technologie und niedrigeren Preisen führen kann. So kann die Quote nach und nach steigen, bis Solarkerosin den Marktdurchbruch ohne weitere Fördermaßnahmen schafft.

Fakten, Hintergründe, Dossiers
  • Treibstoffe
  • Solarreaktoren
  • synthetische Kraftstoffe
  • Kerosin
Mehr über IASS Potsdam
  • News

    Innovationspreis für klimafreundliche Methanspaltung

    Energie aus Erdgas ohne klimaschädliche CO2-Emissionen: Das verspricht eine neue Technologie, die Wissenschaftler des Karlsruher Instituts für Technologie (KIT) und des Institute for Advanced Sustainability Studies (IASS) in Potsdam in einem gemeinsamen Forschungsprojekt entwickelt haben. D ... mehr

    Crack it: Fossile Energie ohne Klimagase

    Die Erzeugung von Energie aus Erdgas ohne jegliche Kohlendioxid-Emissionen könnte mit Hilfe einer neuen von Forschern des Institute for Advanced Sustainability Studies (IASS) in Potsdam und des Karlsruher Instituts für Technologie (KIT) entwickelten Technologie schnell Wirklichkeit werden. ... mehr

    Wasserstoff aus Methan ohne CO2-Ausstoß

    Wasserstoff aus Methan herzustellen, ohne dass dabei Kohlendioxid entsteht, ist Ziel eines Projekts, an dem das KIT maßgeblich beteiligt ist: Im Karlsruher Flüssigmetalllabor KALLA bauen Forscher einen neuartigen Flüssigmetall-Blasensäulenreaktor auf, der eingeleitetes Methan unter hoher Te ... mehr

  • Forschungsinstitute

    Institute for Advanced Sustainability Studies e.V.

    Das IASS in Potsdam widmet sich in einer ganzheitlichen Form transdisziplinär und international der Erforschung des Klimawandels, der Komponenten des Erdsystems und der Nachhaltigkeit. Dieser Ansatz bietet Freiräume, motiviert zum Querdenken und soll gleichzeitig wissenschaftliche Höchstl ... mehr

Mehr über ETH Zürich
  • News

    Lichtverstärkung beschleunigt chemische Reaktionen in Aerosolen

    Aerosole in der Atmosphäre reagieren unter Sonnenlichteinstrahlung. Im Innern der Aerosol-​Tröpfchen und -​Partikel wird das Licht verstärkt, was die Reaktionen beschleunigt, wie ETH-​Forschende nun zeigen und beziffern konnten. Die Wissenschaftler:innen raten, den Effekt in künftigen Klima ... mehr

    Spiegelkabinett als Sensorplattform

    Sensoren sind ein Grundpfeiler des Internets der Dinge, sie liefern die Daten für die Steuerung aller möglichen Objekte. Präzision ist dabei unerlässlich, und hier könnten Quantentechnologien einen wichtigen Beitrag leisten. Forscher in Innsbruck und Zürich zeigen nun, wie Nanoteilchen in w ... mehr

    Blick in die magnetische Zukunft

    Der Einblick in die Vorgänge innerhalb von solch künstlichem Spin-​Eis könnte eine wichtige Rolle spielen bei der Entwicklung neuartiger Hochleistungsrechner. Gefriert Wasser zu Eis, ordnen sich die Wassermoleküle mit ihren Wasserstoff-​ und Sauerstoffatomen in einer komplexen Struktur an. ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr