19.11.2021 - Ludwig-Maximilians-Universität München (LMU)

Neue Methode: Karbonat statt Kohlendioxid

Nanowissenschaftler haben eine Technik entwickelt, kohlenstoffhaltige in kohlenstofffreie Brennstoffe umzuwandeln, ohne CO2 frei werden zu lassen

Die Natur kennt mehrere Wege, wie das Molekül Kohlenstoffdioxid (CO2) gebunden werden kann. Der bekannteste ist die Photosynthese. Dabei wird Sonnenlicht benutzt, um CO2 in Biomasse umzuwandeln. Forschungsgruppen weltweit bemühen sich, diesen Prozess nachzuahmen und eine sogenannte künstliche Photosynthese zu realisieren. Ziel ist hierbei, CO2 mit Hilfe von Licht effizient in synthetische Brennstoffe zu transformieren. Die Natur kennt aber auch andere Strategien, um Kohlenstoffdioxid zu binden, so findet sich CO2 in den Ozeanen dieser Welt als Karbonat (CO32-) gelöst. Zum Beispiel können Schalentiere wie Muscheln das gelöste Karbonat nutzen und daraus feste Strukturen zu ihrem eigenen Schutz formen, die auf Kalziumkarbonat (CaCO3) basieren. Diese finden sich dann letztendlich in Felsgesteinen rund um den Globus wieder.

Inspiriert durch das Vorbild der Schalentiere haben LMU-Wissenschaftler am Nano-Institut München eine Technik entwickelt, kohlenstoffhaltige Brennstoffe in kohlenstofffreie Brennstoffe umzuwandeln, ohne dabei CO2 frei werden zu lassen. Kohlenstoff wird dabei als Karbonat gebunden. Die Nanophysiker verwendeten als Ausgangsprodukt sogenanntes alkalines Methanol und entwickelten ein System, welches unter Lichteinstrahlung daraus effizient Wasserstoff als Gas und Karbonat in Form kleiner Steinchen produzierte. Um bei dieser Umwandlung das einfallende Licht und die in atomarer Form vorliegenden Katalysatoren maximal nutzen zu können, entwickelten sie ein aus mehreren Kunststofflagen bestehendes Substrat. Darin entstand deutlich mehr Wasserstoff als bei bislang verwendeten Techniken, die thermische Energie einsetzen.

Den Großteil der Experimente machte dabei Dr. Yiou Wang, der derzeit als Stipendiat der Alexander-von-Humboldt Stiftung bei Prof. Jochen Feldmann am Lehrstuhl für Photonik und Optoelektronik tätig ist. Er schildet „zwei Momente großer Begeisterung“: „Zunächst sah ich die vielen Wasserstoffbläschen von den katalytisch belegten Polymerlagen aufsteigen und dann bemerkte ich, wie kleine Karbonatkristalle aus der Lösung ausfielen.“ Dr. Jacek Stolarczyk, ein Experte für künstliche Photosynthese, fügt hinzu: „Licht ist ein exzellentes Werkzeug, um Reaktionen zur Energieumwandlung zu triggern, das ist viel praktischer, als hohe Temperaturen und hohe Drücke einzusetzen.“

Eine mögliche Anwendung besteht darin, Wasserstoff aus einfachen Alkoholen quasi „vor Ort“ herstellen zu können. Hiermit würde man Risiken vermeiden, die beim Speichern und Transport von Wasserstoff entstehen, etwa wenn man Brennstoffzellen in Fahrzeugen verwendet. Solch ein kohlenstoffneutraler und durch Licht ausgelöster Prozess kann Wasserstoff sicher und effizient generieren, ist potenziell hochskalierbar und daher vielversprechend für breit gefächerte Anwendungen. Prof. Jochen Feldmann bemerkt: „Die Vermeidung von CO2-Emissionen durch eine Bindung des Kohlenstoffs in Karbonaten könnte sich zu einem neuartigen Konzept bei der Verwendung kohlenstoffhaltiger Brennstoffe entwickeln.“

Fakten, Hintergründe, Dossiers
Mehr über LMU
  • News

    Neuartiger Quanteneffekt in hauchdünnem Kohlenstoff entdeckt

    Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab. Unter besonderen Umständen kann der Widerstand jedoch einen festen, also quantisierten, materialunabhängigen Wert annehmen. Diese Quantisierung des elektrischen Wid ... mehr

    Mit Goldpartikeln Energie in DNA-Architekturen übertragen

    Seit 2006 arbeiten etliche Labors weltweit mit dem sogenannten DNA-Origami, um Nanostrukturen aus einzelnen DNA-Sequenzen künstlich aufzubauen und zu komplexen Objekten zu falten. Dabei verwenden Wissenschaftler einen Strang viraler DNA als Gerüst, dessen Basen-Abfolge bekannt ist. „Mit pas ... mehr

    Begann die Darwin’sche Evolution schon, bevor es Leben gab?

    Ehe Leben auf der Erde entstand, gab es vor allem eines: Chaos. Eine Unmenge einfacher Moleküle, Salze sowie langkettiger Moleküle wie DNA, RNA oder Proteine in unterschiedlichen Längen waren in der Ursuppe gelöst und zum großen Teil wild durcheinandergemischt. Damit die ersten lebensähnlic ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr